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FOREWORD

This document contains the Proceedings of the Third Conference on Artificial Intelligence for
Space Applications (CAISA), sponsored by the National Aeronautics and Space Administration's
(NASA's) George C. Marshall Space Flight Center (MSFC) and the University of Alabama in
Huntsville (UAH). There is widespread interest throughout the aerospace community in
utilizing scientific and technical developments from the field of Artificial Intelligence (AI) to
enhance our space program. For NASA, future activities in space will rely on the effective
utilization of key AI components. The intent of this conference is to provide an opportunity for
those groups and individuals who employ AI methods in space applications to identify common
goals, to compare the effectiveness of the various approaches being investigated, and to discuss
issues of general interest in the AI community. The Third CAISA brings together a diversity of
scientific and engineering work and is intended to promote thoughtful discussion concerning the
possibilities created by this work.

AI contains many components, some of which can be selectively applied to develop more
competent, less demanding flight/ground systems. This is the message of the invited speakers at
our keynote session. As the participants in this conference have recognized, there is no more
fascinating - nor more potent - combination of technologies than is found in the use of Artificial
Intelligence to support our exploration of space. The potential benefits to our society and all
mankind are literally limitless. The presentations in our technical sessions discuss various
aspects of this technology. The papers presented were selected through a careful review of the
submitted abstracts by at least five members of the Technical Committee. The selected
presentations, represented by the papers or abstracts herein, were organized into twenty-one
technical sessions. Every effort was made to minimize the conflicts arising from parallel
sessions. The broad range of topics presented is indicative of the interest in NASA's goals
commonly found in the AI community.

This conference would not have been possible without the dedicated efforts of many people. First,
I would like to thank the authors whose research and development efforts are presented here.
Second, I thank the members of all the committees, the advisors, and the volunteers who planned
and implemented the numerous activities which enable a conference such as this one. I thank the
exhibitors for their efforts to develop and demonstrate tools for implementing many of the ideas
discussed during these two days. And, finally, I thank the invited speakers and the many other
people from NASA and UAH whose interest in Artificial Intelligence and space applications makes
this conference both possible and meaningful.

Thomas Dollman
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VERIFICATION ISSUES FOR RULE-BASED EXPERT
SYSTEMS

Chris Culbert, Gary Riley, Robert T. Savely
Artificial Intelligence Section - FM72

NASA/Johnson Space Center
Houston, TX 77058

ABSTRACT

Expert systems are a highly useful spinoff of the artificial intelligence research
efforts. One major stumbling block to extended use of expert systems is the lack of
well-defined verification and validation (V&V) methodologies. Since expert systems
are computer programs, the definitions of "verification" and "validation" from con-
ventional software are applicable. The primary difficulty with expert systems is the use
of development methodologies which don't support effective V&V. If proper techniques
are used to document requirements, V&V of rule-based expert systems is possible,
and may be easier than with conventional code. For NASA applications, the flight
technique panels used in previous programs should provide an excellent way of
verifying the rules used in expert systems. There are, however, some inherent
differences in expert systems that will affect V&V considerations.

INTRODUCTION

Expert systems represent one important by-product of Artificial Intelligence
research efforts. They have been under development for many years and have
reached commercial viability in the last three to four years. However, despite their

apparent utility and the growing number of applications being developed, not all ex-
pert systems reach the point of operational use. One reason for this is the lack of well
understood techniques for V&V of expert systems.

Developers of computer software for use in mission or safety critical applications
have always relied upon extensive V&V to ensure that safety and/or mission goals
were not compromised by software problems. Expert system applications are
computer programs and the same definitions for V&V apply to expert systems.
Consequently, expert systems require the same assurance of correctness as
conventional software.

Despite the clear need for V&V, considerable confusion exists over how to
accomplish V&V of an expert system. There are even those who question whether or
not it can be done. This confusion must be resolved if expert systems are to succeed.
As with conventional software, the key to effective V&V is through the proper use of a
development methodology which both supports and encourages the development of
verifiable software.

THE COMMON EXPERT SYSTEM DEVELOPMENT METHODOLOGY

Most existing expert systems are based upon relatively new software techniques
which were developed to describe human heuristics and to provide a better model of
complex systems. In expert system terminology, these techniques are called
knowledge representation. Although numerous knowledge representation techniques



are currently in use (rules, objects, frames, etc) they all share some common
characteristics. One shared characteristic is the ability to provide a very high level of
abstraction. Another is the explicit separation of the knowledge which describes how
to solve problems from the data which describes the current state of the world.

Each of the available representations have strengths and weaknesses. With the
current state-of-the-art, it is not always obvious which representation is most
appropriate for solving a problem. Therefore, most expert system development is
commonly done by rapid prototyping. The primary purpose of the initial prototype is to
demonstrate the feasibility of a particular knowledge representation. It is not unusual
for entire prototypes to be discarded if the representation doesn't provide the proper
reasoning flexibility.

Another common characteristic of expert system development is that relatively
few requirements are initially specified. Typically, a rather vague, very general
requirement is suggested, e.g., "We want a program to do just what Charlie does".
Development of the expert system starts with an interview during which the knowledge
engineer tries to discover both what it is that Charlie does and how he does it. Often
there are no requirements written down except the initial goal of "doing what Charlie
does". All the remaining system requirements are formulated by the knowledge
engineer during development. Sometimes, the eventual users of the system are
neither consulted nor even specified until late in the development phase. As with
conventional code, failure to consult the intended users early in the development
phase results in significant additional costs later in the program.

So where does all this lead? The knowledge engineer is developing one or more
prototypes which attempt to demonstrate the knowledge engineer's understanding of
Charlie's expertise. However, solid requirements written down in a clear,
understandable, easy to test manner generally don't exist. This is why most expert
systems are difficult to verify and validate; not because they are implicitly different from
other computer applications, but because they are commonly developed in a manner
which makes them very difficult or impossible to test.

NEW APPROACHES TO DEVELOPMENT METHODOLOGIES

From the preceding section, it should be clear that the problem is the use of
development methodologies which generally do not generate requirements which can
be tested. Therefore, the obvious solution is to use a methodology which will produce
written requirements which can be referred to throughout development to verify
correctness of approach and which can be tested at the end of development to
validate the final program.

Unfortunately, it's not that simple. Some expert systems can probably be
developed by using conventional software engineering techniques to create software
requirements and design specifications at the beginning of the design phase [1]. How-
ever, the type of knowledge used in other expert systems doesn't lend itself to this
approach. It is best obtained through iterative refinement of a prototype which allows
the expert to spot errors in the expert system reasoning before he can clearly specify
the correct rules.



The goal of any software development methodology is to produce reliable code
that is both maintainable and verifiable. A software development methodology for
expert systems must serve a similar purpose as one for conventional software.
However, there are some differences between expert systems and conventional
software which will affect the development methodology. Development methodologies
for expert systems are discussed in more detail in another paper by the authors [2].
Suffice to say here that some kind of development methodology must be chosen and
applied to support effective V&V.

MAKING THE REQUIREMENTS WORK

Once we accept that requirements and specifications must be written and a
methodology for how and when to write them has been adopted, the actual work of
verifying and validating the program must be done. A very appropriate technique
would be a direct derivative of the methods used to develop procedures, flight rules,
and flight software for the Apollo and Shuttle programs. This technique consists of
Flight Technique Panels which regularly review both the procedures for resolving a
problem and the analysis techniques used to develop those procedures.

If expertise is not readily available from past experience, the analysis efforts
typically use high fidelity simulations based on system models to derive and evaluate
control parameters. If expertise is available, the knowledge is reviewed by the panel
and placed in the appropriate context. The panels consist of system users,
independent domain experts, system developers, and managers to ensure adequate
coverage of all areas of concern. In previous programs, the typical output of such a
panel was a set of flight rules describing the operational requirements for a system.

Sometimes these flight rules were translated into computer programs (typically as
decision trees) and embedded in the onboard or ground computers. An additional
verification step was needed to guarantee that the flight rules approved by the panel
were properly coded. More often, computer limitations caused the flight rules to remain
in document form used directly by flight controllers and mission crews.

For future programs, many of the flight rules which come from the Flight
Technique Panels can be coded directly into expert systems. Expert systems
developed in this manner will have undergone extensive verification through the panel
review. They should also prove easier to verify in code form because the rule
language will allow the program to closely resemble the original flight rule.

Programs of the complexity and size with which NASA regularly deals make this
approach mandatory. Smaller programs generally will not require the resources or
effort involved in verifying a system to this extent. The size of the panel and the length
of the review process can be scaled down to something appropriate for the complexity
and size of the application. For some applications, the panel approach could look very
similar to independent code review techniques.

Exhaustive testing through simulation remains the most effective method
available for final validation. However, for any system of reasonable complexity,
exhaustive testing is both prohibitively expensive and time consuming. Space Shuttle
applications typically used extensive testing with data sets representative of the
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anticipated problems or failure modes. This method is not guaranteed to eliminate all
software bugs, but it can prevent the anticipated problems. If used properly,
representative testing can eliminate enough problems to make the software
acceptable for mission and safety critical applications.

The panel approach to verification discussed above is very effective at ensuring
that the knowledge in the expert system is both correct and complete. Verification of
conventional software also covers feasibility, maintainability, and testability. These
verification efforts are generally done early in the design phase and should also be
done for an expert system. The coded rules must also be examined to ensure that the
consistency and completeness of the design is properly incorporated in the software.

Some of this work can be done automatically. Testing a rule language for
completeness and consistency may actually be easier than testing conventional
programs. The explicit separation of knowledge elements from control and data
elements may allow relatively straightforward analysis of the rules by automated tools
[3]. If automated methods are not used, other standard methods such as code reviews
and manual examination of the rules may also be comparatively easy, again due to
the independent nature of the knowledge elements. They can be done by the whole
panel, or more likely, small teams of people drawn from the whole panel.

Feasibility of knowledge representation is usually fully tested in the early
prototypes, but the feasibility of other elements of the expert system, such as
performance, user interfaces, data interfaces, etc. must also be verified. The use of
rapid prototyping can be extended from testing representation to testing some of these
areas as well. Iterative development can go a long way to ensuring that the final
system truly meets the user needs in these kind of areas.

Finally, the requirements must be examined to ensure that they are able to be
tested. They should be specific, unambiguous and quantitative where possible.
Objective requirements will aid in the development of rigorous test cases for final
validation. A test plan should be written which discusses how the final expert system
will be tested.

OTHER ISSUES FOR EXPERT SYSTEM V&V

There are other differences between between conventional software and expert
systems, and those differences will affect V&V efforts. Some of the differences are
discussed in reference [4] and summarized below.

Verifying the Correctness of Reasoning

Verifying that an expert system solves a problem for the right reasons is
sometimes as important as getting the right answer. For a rule-based expert system,
identifying all possible paths to a solution is very difficult. Therefore, it is important to
ensure that the expert system has gotten the right answer for the right reasons.



Verifying the Inference Engine

The inference engine in a rule-based expert systems is a completely separate
piece of code anc can be fully verified independently from the rest of the expert
system.

Verifying the Expert

This question is automatically resolved as long as the expert system is validated.
The panel approach discussed in this paper provides continual feedback on the
correctness of the experts knowledge.

Real-Time Performance

Most conventional programs provide performance "guarantees" through
extensive simulation of the expected performance environment. Expert systems can
provide the same kind of performance "guarantees". Some kinds of conventional
programs are analyzed at the machine instruction level to specifically determine the
amount of time required to process a given data set. Achieving the same kind of
capability in a rule-based expert system is more difficult, but can be done for a given
data set entered in a specific sequence.

Complex Problems with Multiple Experts

The panel review method already discussed here is clearly the appropriate
method for resolving a problem of this type. The review process used by the panel will
allow inputs from any number of domain experts and will also establish the methods of
validating system responses.

Traceability of Requirements

Tracing requirements after they have been coded in rules may be more difficult
than for conventional code, particularly when hybrid representation techniques are
used, i.e. when both rules and objects are used to satisfy the program's requirements.
This is an area that needs further consideration.

Verifying the Boundaries of the Expert System Domain

V&V of an expert system must be carefully aimed at identifying the boundaries of
a problem since the experts sometimes can not readily do so. V&V must also ensure
that the expert system fails gracefully in these circumstances.

There are additional issues not discussed in reference [4]. These are discussed
more fully below.

Reasoning under Uncertainty

Some expert system applications deal with incomplete, inconsistent, or uncertain
information. Humans do a very good job of reasoning under uncertainty, but it can be
very difficult to develop consistent models which exactly duplicate this process.
Numerous methods have been developed to allow expert systems to deal with this
type of information, such as fuzzy logic, probability methods like Bayes theorem,
Dempster-Schafer theory, certainty factors, etc. The nature of how humans use this
type of information makes it very difficult to verify in an expert system. Different people
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may give different answers when presented with the exact same information. V&V
efforts must focus on two things; (1) verifying that the answers suggested in uncertain
situations are 'acceptable' answers. The definition of 'acceptable' may be problem
dependent, and (2) if uncertain information is combined, the method used to provide a
certainty factor to the result must be consistent.

Maintaining a verifiable system

Long-term maintenance of an expert system is a poorly understood topic,
primarily because there is little actual experience in this area. Soloway, et al. [5]
discuss some of the difficulties in maintaining XCON, one of the largest and oldest
expert systems in use today. They point out that XCON is a very dynamic system, with
extensive changes occurring regularly. As with conventional software, most expert
systems will change and V&V must be performed each time the modified system is
released. The nature of almost all rule-based languages makes true modularization of
code more difficult than with conventional software. Therefore, rule-based systems
presently require complete retesting with every release, using a library of test cases.
Good programming practices such as using explicit control features and simple rules
are important aids, but may not be sufficient to prevent extensive retesting. This area
will be better understood when more applications reach maintenance stages.

CONCLUSIONS

Verification and validation of expert systems is very important for the future
success of this technology. Software will never be used in non-trivial applications
unless the program developers can assure both users and managers that the software
is reliable and generally free from error. Therefore, V&V of expert systems must be
done. Although there are issues inherent to expert systems which introduce new
complexities to the process, verification and validation can be done. The primary
hindrance to effective V&V is the use of methodologies which do not produce testable
requirements. Without requirements, V&V are meaningless concepts. An extension of
the flight technique panels used in previous NASA programs should provide both
documented requirements and very high levels of verification for expert systems.
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Using Output to Evaluate and Refine Rules in Rule-Based Expert Systems*
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St. Louis, MO

ABSTRACT

As space systems become increasingly complex and ambitious, the need for reliable expert
systems to perform monitoring and diagnostic functions becomes more critical. Rule-based
expert systems typically require large knowledge bases which must be carefully evaluated before
being used in space vehicle operations. In the evaluation/refinement process, the knowledge
engineer and domain experts evaluate expert system output and ref'me the rule base. The rule
base size, coupled with rule interdependencies, makes this a very difficult task.

The research described suggests a method to compare the output set (E) of a rule-based
expert system with a known set of correct conclusions (C) for a given set of input data and make
decisions on how to refine the rule base. Using the techniques presented, system developers can
evaluate and refine rules more accurately.

INTRODUCTION

Expert system evaluation/refinement attempts to insure that the conclusions of an expert
system match those of a human expert. Typically, this process is accomplished by having the

knowledge engineer input cases where behavior is kn,own by the domain expert. The predictions
m l| •ade by the expert system are then compared to the correct answers. Where the results differ,
the knowledge engineer works with domain experts to:

1. Locate and refine rules whose performance is questionable,
2. Identify missing rules and add them to the knowledge base,
3. Resolve conflicting rules, and
4. Remove extraneous rules.

This process is time-consuming and difficult to apply when the knowledge base is large and has
many rule interdependencies. Learning techniques suggest some methods which can be used to
expedite the process [1,3]. In particular, these techniques can be used to help isolate
questionable rules and suggest avenues which should be explored to correct the problems.

The task is to modify a set of rules of the form hypothesis implies conclusion, viz.

H ----_K

where H and K contain one or more propositions or negated propositions connected with
conjunctions. The components of each rule come from a description space which has been
determined by the knowledge engineer and the domain expert. Identification of the description
space is an important and difficult problem since it contains all propositions used to describe the
environment. Existing rules are refined by altering the propositions within H and/or K. New
rules are created by combining propositions from the description space. The process of
evaluation may indicate the description space needs to be expanded.

* This work was supported by the McDonnell Douglas Independent Research and
Development program.

** Dr. St. Clair is Professor of Computer Science at the University of MO-Rolla, Graduate
Engineering Center in St. Louis. He is currently on leave at MDRL.
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The use of output to evaluate and refine rules necessitates the collection of some additional
information. A trace of each rule chain producing system output along with corresponding rule
unifications must be maintained for each test scenario to allow individual rules to be evaluated.

In addition, two experience indicators must be maintained for each rule. A rule's "times fired"
statistic is incremented each time it is fired. A rule's "times correct" statistic is incremented each

time it participates in a rule chain leading to a correct system response. These statistics are used
in the evaluation/refinement process.

COMPARISON OF EXPERT SYSTEM OUTPUT WITH KNOWN RESULTS

For a specific test scenario, three different conditions can be identified by comparing the
output set (E) of the expert system with the set of known correct results (C). The three basic set
relationships are shown in Figure 1.

Figure 1.

E-C _ C-E

EriC

Comparison of Output with Known Results.

Each system output conclusion, e i e E, is the result of expert system input causing a
chain of one or more rules to fire. Those e i _ E n C represent rule chains which terminate with a
rule whose conclusion provides correct system response. Those e i _ E - C represent rule chains
whose terminating rule conclusion produces an incorrect system response. Rule chains

producing such output contain one or more incomplete or incorrect rules. Elements c i e C - E
indicate incorrect or missing rules.

The comparison of sets E and C for a specific test scenario will not identify cases where
incorrect rule chains produce a correct conclusion. In many cases however, the identification of
faulty rules in such chains will occur by applying the evaluation/refinement process to numerous
test scenarios.

Some erroneous conditions can not be completely uncovered by comparing the contents of
sets E and C. This includes cases where set E contains conflicting conclusions. In addition,
each rule in an expert system which completely satisfies a suite of test scenarios will have
identical "times f'_red" and "times correct" statistics. A rule whose "times fired" statistic is zero

has not participated in the test suite.

EVALUATION/REFINEMENT OF RULES

The process of evaluating/refining rules consists not only of "fixing" incorrect or missing
rules but of identifying rules which consistently work well and removing rules which are no
longer needed by the system. The techniques described are iterative. To apply these techniques,
each scenario in the test suite is processed by the expert system. Next, system evaluators use this
output and the sets of known correct conclusions to perform the evaluation/refinement process.
Then, the revised expert system reprocesses the test suite and the results are again
evaluated/refined. Both the comprehensiveness of the test suite and the quality of expert system
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designdeterminethenumberof timesthiscyclemustberepeated.Duringeachcycle,rule
experienceindicatorsmustbeupdatedsotheyaccuratelyreflectruleperformance.Thissection
suggestswaysof performingtheevaluation/refinementprocess.

Case 1: e i _ E - C

The rule chain leading to a conclusion e i _ E - C represents an error of commission. It
contains one or more rules which should not have fired. The evaluation/refinement of such rule

chains requires solution of what Minsky termed the credit/blame assignment problem [4]. The
solution of this problem identifies rules responsible for incorrect system behavior.
Bundy, et al.[3] describe two basic techniques utilized by rule learning programs for identifying
the first faulty rule within a chain. The identification of multiple faults within a chain requires
repeated application of the evaluation/refinement process.

The first technique compares the actual rule chain with the chain which should have fired.

Some programs require this ideal chain as input [2] while others [5] attempt to derive it by
analysis using problem-solving and inference techniques. The first difference between the chains
indicates which rule is faulty. The necessity of identifying the ideal rule chain makes this
technique difficult to apply.

The second technique for finding a faulty rule is called Contradiction Backtracking. This
technique, developed by Shapiro [7] does not require the identification of an ideal chain.

Assuming the actual rule chain concludes with e i _ E - C, Shapiro's algorithm begins by
examining the last resolution step which lead to e i. If the propositions which were resolved
to produce e i are true, select the branch of the tree which contains these propositions as part of
.the rule hypothesis, else select the other branch. Backtracking up the resolution tree is continued

In this manner until a rule from the rule base is reached. This is the faulty rule. Both Shapiro and
Bundy, et al. give examples of Contradiction Backtracking.

Once a suspect rule is located, its evaluation can lead to one of several conclusions.
1. The hypothesis of the rule is correct but the conclusion is incorrect. This situation is

resolved by correcting the rule's conclusion.

2. The hypothesis of the rule is incorrect. Offending propositions in the hypothesis are
replaced with correct ones.

3. The hypothesis of the rule is incomplete. Additional propositions must be added to the
hypothesis to restrict the firing of the rule. The process of restricting a rule's
application in this way is called discrimination [1]. The need for adding additional
propositions to a hypothesis may lead to the discovery that the description space for
the problem is incomplete.

The alteration of a rule should be done carefully since such changes are likely to effect
other chains in which the rule participates. If the values of one rule's experience indicators vary
from the experience indicators of other rules in the chain, it is highly likely at least one rule in the
chain participates in other chains.

Case 2: e i _ E n C

Since those conclusions e i _ E n C are correct, the "times correct" statistic is incremented
for each rule in the associated chain. These statistics are helpful when trying to correct faulty
rules, since they provide a history of each rule's performance. Incrementing these statistics
indicate the rule has participated in a chain which leads to a correct conclusion. They do not
indicate that each rule in the chain is correct.

11



Case3: c i_ C-E

A known correct conclusion C i E C - E represents an error of omission. This can happen
for two basic reasons:

1. A chain exists for producing this conclusion but it contains one or more incorrect
rules, or

2. No chain resulting in this conclusion exists.

Finding existing faulty chains in this case is extremely difficult unless the ideal trace is

known. In simple cases, it may be possible to find a rule whose conclusion matches c i but
whose hypothesis is incorrect. If a suspect rule can be found, its hypothesis may contain
incorrect or overrestrictive propositions. In the latter case, it may be possible to generalize the
rule by removing the overrestrictive propositions [1]. In many cases, generalization results in
combining several rules into one. Since rules being generalized may participate in other rule
chains, these chains must be examined before performing generalizations.

When no chain exists for producing a missing conclusion, one of two types of refinements

may be made. A new chain can be created which terminates with a rule whose conclusion is c i.
In many cases, the basic system architecture helps suggest how the rule chain should be created.
This process actually expands the rule base of the expert system. St. Clair, et al. [6] used this
discovery technique in an adaptive diagnostic expert system which automatically refines its
knowledge base. Alternately, it may be possible to add the missing conclusion to a rule which
has produced a correct conclusion e i _ E n C This option is viable only if e. and c. always

• . " , . 1 .1 .

occur together. If this as not the case, a new rule chain should be added which terrmnates wxth

the conclusion c i.

Case 4: Other Cases for Evaluation/Refinement

Rule evaluation/refinement is incomplete as long as the system contains rules whose "times
correct" to "times fired" statistics are not equal. Such rules are members of incorrect rule chains.
If a rule is incorrect, it should be evaluated/refined as indicated above while carefully noting the
chains in which it participates. Such a rule may make a correct contribution to some chains and
an incorrect contribution to others. It may be necessary to replace rules of this type by one or
more new rules.

A rule having a small "times fired" statistic has contributed very little to the expert system's
operation. This may be due to the fact that the rule has not applied to the scenarios tested or it is
extraneous and makes little or no contribution to system performance. The former case can be
resolved by utilizing test scenarios which fire the rule. Extraneous rules occur as a result of
errors in system design or because the refinement of other rules has removed them from rule
chains. Removal of extraneous rules from the knowledge base may be desirable.

Set E must be reviewed to determine if conflicting conclusions exist. Conflicting
conclusions result when one rule chain produces a conclusion inconsistent with that of another,
for example, when one conclusion requests replacement of unit A and another requests
adjustment of unit A. The rule chain belonging to the incorrect conclusion must be refined.

Cases in which e. = e. for i _ j, indicate that two or more rule chains led to the same
• . .1. J

conclusxon. Th_s condmon may be a result of the original system design or it may arise from
subsumption caused by use of the generalization and discrimination mechanisms described
above. Repetition of results is not always undesirable; however, it serves as an indicator that the
participating rule chains should be evaluated and those rules which are redundant should be
removed.
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CONCLUSIONS

Thetechniquesdescribedprovideaneffectivetoolwhichknowledgeengineersanddomain
expertscanutilizeto help in evaluatingandrefiningrules. Thesetechniqueshavebeenused
successfullyaslearningmechanismsin aprototypeadaptivediagnosticexpertsystem[6] andare
applicableto othertypesof expertsystems.Thedegreeto whichtheyconstitutecomplete
evaluation/refinementof anexpertsystemdependson thethoroughnessof their use.
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ABSTRACT: This paper introduces Paragon, a general-purpose environment for
building model-based expert systems. The focus is on contextual and temporal
representation, with time considered a type of context.

Conceptually, a Paragon knowledge base is a highly constrained semantic network. Its
interfaces enable the domain expert to make knowledge explicit, prevent the proliferation (and
potential contradiction) of preconditions found in rule-based systems, and make the
knowledge base highly partitionable for parallel processing. Paragon automatically generates
LISP code from the knowledge base. Executing this code provides a simulation that allows
the domain expert to observe the explicitly described behavior and verify the validity of the
knowledge base.

Paragon has been demonstrated in domains that are understood well enough to be
modeled, such as satellite diagnostics, ground station diagnostics, and satcom network
monitoring.

INTRODUCTION: Temporal and contextual representation in expert systems Is a difficult
area in Artificial Intelligence (AI). Most expert systems consider time as a special type of
context, as does Paragon. In rule-based systems, context is represented by the premise of
each rule. Since the context in which a rule takes effect is globally referenced, the
premises of rules become longer as the knowledge base gets larger. Partitioning rules into
contextually similar sets only delays the inevitable.

At Ford Aerospace, when preliminary calculations showed that the domain of satellite
diagnostics would require more than 100,000 rules, the researchers sought another
technique [4][7]. The model-based semantic network approach, exemplified in the Calisto
project [6], seemed promising for making large problems tractable.

GOALS: The satellite diagnostics domain is well understood; however, domain experts
are still expensive and difficult to obtain. Therefore, it is desirable to train them in a minimal
amount of time (one week) and immediately place them in front of a workstation running
Paragon. Then the domain expert should describe a satellite's components, the causal and
compositional relationships between them, and their behavior in terms of states, transitions,
and events. The conceptual representation described should exhibit cognitive resonance. In
other words, not only should Paragon be user-friendly, but it should also represent the
high-level concepts and relations that the domain expert uses when thinking. Finally,
Paragon should manipulate these concepts and relations in the same way as the expert does,
thus accomplishing the intended tasks of fault diagnosis, analysis, correction, and planning in
well-understood domains. As in most AI problem areas, everything hinges on knowledge
representation.

PARAGON REPRESENTATION: The Paragon representation can be defined at five layers
[2], as outlined by Ferguson [3].

At the application layer, Paragon has been demonstrated in many domains: satellite
diagnostics, satellite network monitoring, and ground station diagnostics, with expected
demonstration of planning and pattern recognition in the satellite domain. At this layer,
Paragon enables the domain expert to specify (ie. create, name, and link) domain-specific
knowledge about batteries, heaters, their thermal and electrical relationships, commands,
procedures, and other physical and non-physical ideas. The domain expert never sees LISP
code, and touches the keyboard only when assigning names.

At the conceptual layer, Paragon provides primitives such as Concepts (semantic net
nodes), and Relations (semantic net links). Central to the issue of knowledge acquisition,

PRECEDING PAGE BLANK NOT FII.MF.O
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Paragon makes it possible for the domain expert to create user-defined, but Paragon-
constrained, Concepts and Relations.

At the epistemological layer, Paragon provides six types of concepts that can be named
and linked to other concepts (Figure 1 illustrates the examples):

1) Primitive Concepts (Primitives) represent instantiations of physical and nonphysical
objects in the real world (ie. Battery1, Switch2). They gather Attribute Concepts together
under a single name, and are the primary focus of behavior, causal relations, and
compositional relations.

2) Definition Concepts (Classes) are generic covering sets of other Primitives or
Classes, and allow the grouping of concepts by classification (ie. Battery, Heater).

3) Attribute Concepts (Attributes) describe properties of Primitives and Classes (ie.
Voltage) and contain the name, type, and value of those properties.

4) Composite Concepts (Composites) are compositional groupings of concepts (ie.
Composite Heater1 "has parts" HeatingElement and Switch2).

5) Event Concepts (Events) describe changes to Attribute values of a Primitive while in
a particular state, and are equational in nature (for example, the Voltage of Battery1 is divided
by the Resistance of Heater1 => the Current of Battery1.

6) State Concepts (States) collect the Events that occur while a Primitive is in a
particular state (ie. Charge or Discharge).

Relations (the instances of which are also called links) contain a minimal amount of
information and can be of four main types:

1) Specialization (or Classification) Relations describe the relations between classes
and their subclasses or members. For example, there exists a Specialization Relation
between Battery and Battery1. Inheritance of States, Events, and Attributes can occur in
both directions along this link, saving considerable time in knowledge acquisition.

2) Compositional Relations describe the relations between concepts and their
composites and/or components. One example was given in describing Composite Concepts.

3) Causal Relations describe how Primitives affect each other. For example, Battery1
POWERS HeatingElementl. Every Causal Relation is defined by the domain expert.

4) Transition Relations (Transitions) describe conditions under which "control" of a
Primitive can switch between States, and contains a LISP expression which evaluates to true
or false.

Volt
(_¢crtbu_e)

Battery Ite=ter

(C'/ass) (Clas_)

_specialization ,Ispecial ization

has ,attribute Batteryl Electrical Heater1
(Primitive) cau=al _ (Composite)

has '.st_s istate has, part/_C_//_s, par t
Charge _ trans_>tlon _'_ Discharge

(State) < ,_}. I- (state) Xeating-El ement I -_i tch2
(Prlmitlve) (Primitive)

Volt..t -) Volt Volt-.f-) Volt On Off
(Event) (Event) (State) (State)

Figure 1. Paragon Knowledge Base

One of the most important aspects of Paragon with respect to contextual
representation is that it enforces the principle of locality. This principle constrains access to
information by requiring an explicit relation to be defined between concepts F3]. An Event
can affect only one local Attribute, and while it can access all the other Attributes of the
Event's Primitive, it can only access external attributes through explicit causal relations that
are associated with the Event's Primitive. Transitions are constrained by the same principle.

The logical layer can be interpreted as describing how Paragon handles the ANDing and
ORing of multiple relations and concepts. For example, if two concepts are electrically
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connectedby a numberof digital electrical lines,then the domainexpert can model it either
with a single electrical relation,or many.

At the implementationlayer, LISP hash arrays were used to represent both concepts and
relations, while all Paragon interface and core functionality was implemented in LISP. For
reasons of practicality, additional liberties were taken to compromise the "pure" Paragon
representation with frame-based constructs.

After the domain expert finishes describing each piece of the domain, Paragon
generates a simulation model in LISP source code. This code can then be executed, and its
behavior observed via graphic active images and values. The model can be tested as if it
was a piece of physical hardware, and if it demonstrates the same input/output functionality
as a good device, then the domain expert knows that the knowledge base is correct [8].
This is a bold but unsupported claim. The developers of Paragon have not been able to
mathematically prove truth preservation or logical correctness. However, humans seem to do
intellectual tasks quite well without such rigorous proofs, and even computer programs have
been quite useful without strict logical foundations. In the experience of Paragon users, a
mistake in the description can appear either as wildly oscillating behavior or as no behavior
at all. In other cases, the description error and resulting mis-modeling is more subtle, just as
in physical hardware.

Faults are not modeled in Paragon, because such modeling would be self-defeating.
This is because a device can fail in many more ways than it can work properly. The lack of
fault models has not proven to be a handicap, because Paragon reasoning modules can
pinpoint faults to whatever level the domain has been modeled. Current research on causal
analysis and planning indicate that the Paragon representation is ideal for determining the
cause of failures, and possibly even for finding recovery procedures, though some very high
level of fault representation may turn out to be useful.

CONTEXTUAL REPRESENTATION: In a Paragon Knowledge Base, every object of the
target domain is represented by a Primitive. This Primitive may have many States, with
different Events changing their corresponding Attribute values differently in each particular
State. In the example illustrated in figure 1, Battery1 has States Discharge and Charge, each
containing an Event which modifies the value of Volt. The Process Definition Interface allows
the domain expert to specify States and Transitions between States. There are two
Transitions connecting Discharge and Charge, illustrated by ?> (conditionally true) and ?1
(conditionally false).

To keep the simulator from endlessly looping through states via these transitions, the
domain expert must specify the conditions (or context) under which the transition will occur,
assuming that the Primitive is currently in the "from" state of that particular transition link. In
many ways, this condition is similar to the premise of a rule, and caution must be exercised
to prevent the proliferation of precondition clauses (that define a context) and the
"ad-hoc-ness" that results from too much flexibility.

The purpose of the Context Specification Interface (CONTXSPEC) is to address the
above problem by enforcing the principle of locality. At the implementation level,
CONTXSPEC outputs a condition -- a piece of LISP code that evaluates to either true or
false. On the input side, CONTXSPEC must satisfy the same four criterion that any
representation of reality must provide [6]:

1) Completeness - represent all relevant and necessary knowledge in the domain.
2) Precision - provide appropriate granularity of knowledge.
3) Clarity - lack ambiguity in interpretation.
4) Cognitive Resonance - use the same concepts the domain expert does.

CONTXSPEC satisfies the criterion of completeness by providing the domain expert
with relational operators (=, <, >, etc) and local Primitive Attributes (Voltage of Battery1,
Temperature of HeaterA). Only Attributes of the States' Primitive and those passed in by
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causal links can be accessed, in accordance with the principle of locality. This principle of
locality limits communication between concepts by requiring all cause�effect relationships to
be specified. While very frustrating at times, this strict limitation engenders a number of
significant advantages:

1) When the domain expert wants to access a non-local Attribute, but CONTXSPEC
doesn't provide that access, then he or she will realize that a causal relation has not yet
been made explicit.

2) Prevents the proliferation of preconditions by tying the context to the location of
the nodes and links within the semantic net.

3) Makes each transition self-contained with no side-effects, a property that makes the
Paragon KB ideally suited for parallel processing.

4) Finally, the principle of locality restricts the impossibly large number of attributes
CONTXSPEC must otherwise display to a manageable number.

By mousing four times, the domain expert can specify a simple condition such as "The
Voltage of SolarArrayl is > 10", while CONTXSPEC prevents low-level errors such as
mistyping or selecting the wrong menu. Most of the conditions in Transitions are this simple,
though much more complicated ones are possible with logical operators AND, OR, and/or
NOT. Most of the complexity ends up in the state graph, with its multiplicity of states and
possible transitions. If the state diagram is too complicated, this is an indication that the
concept should be broken down into its components, or that some states may be merged,
unfortunately at a loss of modeling detail. Internally, this condition is represented by a
case-grammar-like sentence, which is very easy to translate to LISP, establishing a condition
in a Transition between two States. This condition can be true or false, depending on the
overall state of the world, or in this example, the value of the Attribute Voltage of the
Primitive SolarArrayl. The evaluation of Events during the execution of simulation code
causes Attributes' values to change.

Originally, Paragon gave the domain experts the capability to represent complex
equations inside the Transition's conditions. Unfortunately, equations hide large amounts of
implicit knowledge. Therefore Paragon was changed to prevent the domain experts from
entering equations anywhere except in the Events. This increased difficulty in knowledge
acquisition was caused by the necessity to break up complicated fomulas into
representations more amenable to automated reasoning.

TEMPORAL REPRESENTATION: Reasoning about time is presently a very debated issue
in AI. However, some ideas are generally agreed upon, for example Allen's relations on
convex time intervals ['1]. Early in Paragon's development, sets of algebraic mappings were
found between any two intervals to produce a third interval (ie. Plus, Minus, Cross-Product,
etc). With a set of relations and mappings, it was assumed that a useful algebra could be
integrated into Paragon. The Temporal Specification Interface (TSI) was developed to quickly
specify complicated temporal expressions. Unfortunately, a non-trivial algebraic group for
time intervals was not found; fortunately, this lack of success didn't matter. During the
development of TSI and the search for a temporal algebraic group, the domain experts used
Paragon concepts to simulate clocks and timers whenever they needed them. Upon closer
examination, it was found that Allen's relations could be implemented in Paragon at the
Attribute-State-Event level, so TSI was never integrated into Paragon. In addition, Paragon
has the ability to do multi-interval comparisons, which Ladkin showed to be infeasible when
representing at the interval-relation level r5].

it turns out to be quite simple to set up very complicated timed, conditional or
asynchronous cycles (or non-cyclic temporal state changes) in the state transition graph of a
Primitive. For example, to simulate the sun-shade cycles that a solar array experiences in
orbit, the Primitive SolarArrayl has an Attribute Clock, which is reset in States StartShade
and EndShade by identical Events (0 => Clock) and set by (Clock+l => Clock) in States Sun
and Shade. The description of SolarArrayl's behavior is completed by specifiying
theTransitions to become true when Clock values are equal to 51 and 39 respectively.
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As in most rule-'based systems, temporal representation is a special case of context in
Paragon. This is because at a certain level of granularity and ignorance, time (and context)
can be considered a cause. In a rule, the premise can be thought of as causing the
consequent. This paradigm may lead to the nonsensical belief that Monday causes Tuesday.
Well, not exactly. The events that occur during Monday (like the passage of time) cause the
Transition between Monday and Tuesday to become true, allowing the change of state.
Given ignorance of the structure of the solar system and of the naming convention regarding
24-hour periods, it is perfectly acceptable for automated causal diagnosis to conclude that
Monday causes Tuesday.

CONCLUSION: This paper presents a basic paradigm that allows representation of
physical systems, with a focus on context and time. Paragon provides the capability to
quickly capture an expert's knowledge and represent that knowledge in a cognitively resonant
manner. From that description, Paragon creates a simulation model in LISP, which when
executed, verifies that the domain expert did not make any mistakes. The Achilles heel of
rule-based systems has been the lack of a systematic methodology for testing, and Paragon's
developers are certain that the model-based approach overcomes that problem. The reason
this testing is now possible is that software, which is very difficult to test, has in essence
been transformed into hardware.
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ABSTRACT

The paper describes a test and validation toolset developed for

artificial intelligence programs. The basic premises of this method are:

(I) knowledge bases have a strongly declarative character and represent

mostly structural information about different domains, (2) the conditions

for integrity, consistency and correctness can be transformed to struc-

tural properties of knowledge bases and (3) structural information and

structural properties can be uniformly represented by graphs and checked

by graph algorithms. The interactive test and validation environment have

been implemented on a SUN workstation.
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INTRODUCTION

Testing and validation is the ultimate precondition for the applica-

tion of artificial intelligence (AI) technology in space systems. In spite

of its obvious significance, testing and validation have been a neglected

topic in AI research. The results being reported are quite contradictory.

Some authors have pointed out that certain knowledge-based systems, such

as expert systems, are inherently untestable and unreliable, while others

argue that software validation is easier for knowledge-based systems than

for conventional programs.

The first section of this paper summarizes our results in the evalua-

tion of AI technology from the aspect of software engineering. An impor-

tant conclusion of this analysis is that clear separation between AI

systems (expert systems, natural language systems, etc.) and AI techniques

(declarative programming, symbolic progran_ring, etc.) is necessary. It has

been shown, that the well-known difficulties in testing and validation are

inherent nature of the functionality of specific AI systems and do not

stem from the implementation technology. Most importantly, the basic AI

techniques offer new opportunities in software testing and validation,

which can dramatically improve the test technology of complex software

systems.

The second section of the paper describes a test and validation

toolset developed for AI program_ting. The basic thrusts of the selected

methodology are: (I) knowledge bases have strongly declarative character

and represent mostly structural information about different domains, (2)

the conditions for integrity, consistency and correctness can be trans-

formed to structural properties of knowledge bases and (3) structural

information and structural properties can be uniformly represented by

graphs and checked by graph algorithms.

An interactive test and validation environment has been implemented

on SUN workstation. The knowledge representation paradigms for which test

and validation methods have been developed include: rule-based systems and

object-oriented progranm_ng. The application of the methodology is

presented for testing structural properties of object-oriented programs.

BACKGROUND

The problems of testing and validation can be examined only in the

context of the system to be tested and validated. Therefore, clear dis-

tinction must be made between systems that are built using AI and the

techniques developed and used in AI programming.

I. AI Systems and AI Techniques

One of the widely accepted, generic objectives of AI is to con-

struct intelligent agents (Newell, 1982). Intelligent agents can

operate autonomously in a task environment, are able to recognize

their situation by means of the perceptual components, and are able to

plan their actions according to a goal structure by means of their

general knowledge. These capabilities are also manifestations of human

intelligence, i.e., the primary objective of AI systems is to mimic

human intelligence.
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The AI systems wnzcn nave recelveo the largest publicity in

recent years are expert systems. Their primary purpose is to represent

human knowledge symbolically and "operate" on the knowledge by using

automated reasoning methods. Some of the most important aspects of

expert systems that have attracted considerable attention are:

- ability to capture rare and expensive human expertise and make it

available,

- ability to reliably operate in fuzzy, unexpected situations,

- ability to implement heuristics,

- ability to explain actions for users.

While seeking a better understanding of human intelligence and

implementing systems that exhibit "intelligent" behavior, research in

AI has discovered a number of novel software techniques and tools.

These techniques and tools have proven to be extremely useful in a

number of application domains struggling with construction of highly

complex systems. More importantly, AI techniques have provided methods

to use computers for symbolic, qualitative "computations, " which have

the immediate potential for building new generations of application

systems in areas such as instrumentation and process control. The

approach, which focuses primarily on AI techniques and not so much on

the scientific objectives of AI, (i.e., understanding and imitation of

human intelligence) is often referred to as AI engineering (Allmen-

clinger, 1986).

It would be difficult to enumerate all of the new software tech-

niques originated and elaborated by AI research. Here we discuss only

declarative programming, which is widely used in the implementation of

intelligent systems.

Conventional programming is essentially imperative, i.e.,

programs describe the sequence of steps that are necessary for solving

a particular problem. We may state that imperative programs primarily

represent "how to" knowledge. In imperative programming the programmer

is responsible for transforming the problem definition ("what to")

into its solution of imperative style.

Declarative programs describe the declarations of problems rather

than their solution. The basic technique used in declarative program-

ming is to build "smart" interpreters that can transform the declara-

tions into "how to" knowledge. The key components of declarative

progra_ning are (I_ the problem-specific representation language,

which is used for describing the problem and (2) the corresponding
interpreter.

Well-known programming paradigms that are strongly declarative
are :

- logic programming, where progranming occurs in the form of declar-

ing objects and their relations, (a well known example of logic

programming languages is, of course, Prolog),

- rule-based programming, where the knowledge is expressed primarily
in rule format (e.g., ART, KEE, etc.),

- constraint-based programming, which includes the declaration of

objects (e.g., variables) and the constraints (e.g., arithmetic
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constraints) among them.

Declarative programming is widely used in constructing knowledge-

based systems. The "knowledge base" is usually the declarative com-

ponent while the interpreter is the procedural con_ponent of these

systems (e.g., the rule base is the knowledge base, the inference

engine is the interpreter in the case of rule-based expert systems).

2. Testability in AI Programming

Whether we approach AI progran_ning from the side of specific AI

systems (e.g., expert systems) or from the side of AI programming

techniques (e.g., declarative programming), we can identify sig-

nificantly different views concerning testing and validation.

From a functional point of view, expert systems try to mimic

human expertise. The basic conceptual and practical problems stenmdng

from this fact are clearly described by Lane, 1986.

a. Testing requires design specifications. Lane's observation is that

specifications for expert systems, against which system perfor-

mance can be evaluated "are almost universally lacking in current

expert system developments." The probable reason is that though

the concept of expertise is intuitively clear, it is impossible to

give a unique specification for it (at least presently or in the

immediate future). Obviously, the "rule-set" of rule-based expert

systems can be considered only as a "model" of expertise, rather

than its specification. He suggests the development of new methods

for setting design requirements and system specifications that

should be based on an improved understanding of the roles of

expert systems in complex systems.

b. Performance is dependent on the scenario. A well-known problem of

current and near-future expert systems is that their performance

degrades dramatically at the "boundary of their knowledge base."

Contrary to human experts, expert systems are unable to detect

their limits so as to avoid catastrophic failures and to degrade

gracefully in new or marginal conditions. Lane points out that

except in the relatively sinple cases, when the "expert system" is

actually the implementation of a well-defined decision tree, the

performance evaluation of expert systems has an "inherent

dilenma." A possible method of testing is to sample the scenarios

and conditions, and evaluate the system performance in specific

situations. This method can fail to detect even potentially

catastrophic outcomes. The other alternative is systematic

enumeration of all possible input conditions, which is unrealistic
in most cases due to time and cost.

Test approaches can help in the development of expert sys-

tems, but cannot resolve the problems mentioned above (Gashing et

al., 1983).

The declarative character of the knowledge bases offers new

opportunities for testing some of their structural and logical

features. Validation methods are presented in Stachowitz et al.,

1987; Nguyen, 1987; and Suwa et al., 1982; for checking inconsis-
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tency, completeness, redundancy, etc., of rule bases. It should be

mentioned that these tests cannot guarantee functional correctness

but can offer significant help in detecting potential problems.

GENERIC TEST ANDVALIDATIONMETHODOLOGY FOR KNOWIE[XZE BASES

The basic thrust of our methodology is that the primary implementa-

tion technique for knowledge-based systems is declarative programming. As

we have previously discussed, declarative progran_ting includes three

different program components, which are:

- interpreter,

- typically small imperative components, and
- declarations.

The interpreter and the imperative components are basically conventional

programs that can be tested and evaluated by using well elaborated

software engineering methods and techniques. In this sense, testing and

evaluation of declarative programs does not differ from that of the con-

ventional programs. The major difference is that the complexity of decla-

rative programs is mostly concentrated in the declarations constituting

the "knowledge base" of the system to be tested. Below we summarize some

of the new opportunities emerging for testing and validation of declara-

tive programs.

i. Automatic Proof of Correctness

Declarative programs are typically symbolic representations of

structures. It is possible to implement automatic reasoning processes

that can prove various properties of the structures represented.

Requirements, such as:

"The fan-out must be less than or equal to 20," or

"Two active outputs cannot be connected"

can be easily checked on the declarative representation of a digital

circuit simulator program. In other words, the functional correctness

of the simulator can be tested by using automatic, high-level tools.

2. Mathematical Modelling

The structure of declarative programs can be mapped into graphs

and different structural properties can be _]ecked by using graph

algorithms. E.g., causal networks which are used in failure mode and

effect analysis can be tested for cycles; physical structures can be

tested for connectivity; signal-flow structures can be tested for

loops, etc. Graph algorithms can be used for testing the equivalence

of different declarative programs, which is a unique possibility.

(Proving the equivalence of imperative programs is an extremely com-

plicated problem.)

3. Graphic Tools

Since declarative programs typically represent structures, they

can be represented by graphic tools, and can be synthesized by inter-
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active graphic editors.

Although, these opportunities have been recognized and exploited
in someof the test and validation techniques mentioned before, their
commonfeature is that the actual implementation is closely coupled to
a particular knowledge-based system and knowledge representation
language (Stachowitz, 1987).

Our goal was the development of a generic methodology and
progranming environment which effectively supports the testing and
validation of different kinds of knowledge-based systems. The
rationale behind this goal is the recognition that knowledge-based
systems include multiple knowledge bases and are described in dif-
ferent representation languages.

The generic test and validation method can be summarized as
follows.

Let us suppose, that L is the representation language and P is a
set of declarations written in L. The general steps of validating the
knowledge base are the following:

Specification of test criteria. By analyzing the specific nature
of the knowledge base, a relevant set of test criteria [c(1),

c(2),...,c(n)] has to be defined. The individual test criteria should

be assertions on the structural properties of the knowledge base.

Specification of mapping rules. Depending on the semantics and

syntactics of L, and the way the test criteria can be expressed as

abstract graph properties, mapping rules (M) are defined. The rules

maps P into a labelled, directed graph M (P) ->G (V,E) . The labels of the

vertices and edges of the graph: v[a (i), a (2), ..., a (n) ] and

e[a(1),a(2),...a(j)] are attributes that are extracted from P and

associate the nodes and edges with its semantic entities.

Specification of user interface. The actual test proceeds by

mapping the knowledge base (or certain sections of the knowledge base)

into graphs and checking the test criteria by running graph algo-

rithms. The results of the tests are presented by using a knowledge

base specific graphic interface.

STRUCTURE OF THE TEST AND VALIDATION ENVIRONM/KNT

The methodology described above makes it possible for the design of a

test and validation environment (TVE) where the common components are

clearly separated from those which are unique to specific knowledge bases.

The ultimate benefit of this separation is that the system can be easily

adapted to different problems and representation languages and can provide

a unified environment for testing and validating knowledge bases.

The structure of the TVE can be seen in Figure i. The MAPPER accepts

the knowledge base to be tested from the user and maps it into a graph.

The ANALYZER runs a set of graph algorithms and outputs the results to the

user. The analysis process is interactive and supported by graphics. The

ANALYZER KERNEL constitutes the common part of TVE. It provides a set of
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MAPPER ANALYSER

ANALYSER KERNEL

GRAPHICS

Figure 1" Functional Structure
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services to build, represent and analyze graphs. The sunmary of the inter-

faces of the analyzer kernel can be seen in Tables I, 2, and 3.

The Mapper Interface includes two sets of calls. One of them is used

to parse the input source file which contains the knowledge base. The

other set is used to create and modify graphs. The Analyzer Interface

provides access to the library of graph algorithms which are the basic

building blocks for implementing test and verification procedures.

The selection of graph algorithms is continuously expanded as new

testing and validation methods are developed for different knowledge

bases.

The third group of kernel calls facilitates generation of user inter-

faces. In order to help the user in navigating through complex structures

and in analyzing structural properties, extensive color graphics are used

with a sophisticated window system. The services provided by the graphics

interface are summarized in Table 3. The interactive graphics interface

makes it possible (i) to represent the entire graph, (2) to zoom into

certain areas, (3) to select nodes and edges by using a pointing device

and to display the corresponding semantic entity of the knowledge base in

a text window, and (4) to start various analysis processes through a

hierarchically organized menu interface.

IMPI/94[2TfATION

TVE has been implemented on a SUN 3/110 workstation by using the

Sunview graphics package. The system is decomposed into two communicating

processes (see Figure 2). The Analyzer and Mapper functions run as a LISP

process. The appropriate kernel interface functions are written in C and
are embedded in the LISP environment. The advantage of this solution is

that the knowledge base specific components of the Analyzer and Mapper can

be more conveniently implemented in LISP than in other available

languages.

The graphics interface runs as a separate graphics process which

communicates with the LISP process through UNIX pipes. After receiving a

user command, it is decoded and the appropriate function call is sent to

the LISP process to service the request.

Separation of the graphics interface from the other components of the

syst_J_ ensures the portability of TVE to other workstations, with dif-

ferent graphics capabilities.

APPLICATION EXAMPLE: TESTING AND VALIDATION OF OBJECT-ORIENTED SYSTEMS

Object-oriented programming has the virtue that hierarchical system

declarations and properties, such as structural and functional in-

heritance, can map quite naturally into this programming methodology.

Typically, most of the useful object-oriented systems tend to become

very large _nd, after a point, manual structural testing becomes extremely

difficult, if not impossible. The TVE provides an automated, interactive

test environment, with extensive graphics support, for the structural
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Table I. Mapper Interface

FUNCTION

Parse input

Create graph

PROCEDURECALLS

[Internal set of macros
specific to the representation language]

create-node (attributes)
create-edge (attributes)

DESCRIPTION

Builds symbol tables,
stores text information

creates a list of nodes
Jedges,and graph adjency lists

Table 2. Analyzer Interface

FUNCTION

Detect cycles

Find connected

Jcomponents

Find nodes

matching cer-
tain attributes

Describe node

Access nodes

PROCEDURE CALLS DESCRIPTION

cycles (graph)

find-connected-components (graph)

finds node-chains which form

cycles in the graph

finds a spanning forest for

the graph

find-group (graph attributes)

display-node (node)

Igen-lower-tree (node)

Jgen-upper-tree (node)

Jpartitions the graph based on

specific attributes of nodes

or edges

displays all attributes of

a node

generates sub-tree

rooted at this node

Table 3. Graphics Interface

FUNCTION

Menu-based

input

Graph layout

PRCCF/gURE CALLS DESCRIPTION

[executive calls] Iconverts analysis requests

Jfrom graphics process into

Janalyzer function calls

I
hierarchy (graph root), bipartite (graph) Idraws nodes and edges on

generators Itree (graph root) Iscreen

l l
JHighlight sec- lhighlight (path graph) [executive calls] Jhighlights cycles, displays
Itions of graph J

I i
J I

Jtext, zooms on sections of the

Jgraph

l
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testing of large object-oriented systems.

Currently the facilities provided by the TVE are:

I. Generating the inheritance hierarchy for the entire system.

2. Generation of the inheritance tree for specific object classes in the

system.

3. Detection and highlighting of cyclic inheritance of object classes.

4. Detection of missing class and methoddefinitions.

, Detection of conflicting method definitions (i.e., an object inherits

methods of the same name from two different classes, but these two are

in no way connected, i.e., they lie on two different paths in the

inheritance tree.)

The sequence of actions performed is as follows:

The MAPPER accepts the object-oriented system written in a particular

object-oriented programming language as input, and maps it into a graph.

Each object class in the system is mapped onto a node in the graph,

and edges are defined as follows:

If an object class A inherits(includes) the class definition of

object class B , then there is an edge from the node representing class A

to the node representing class B. With this simple algorithm the entire

graph is built. The current system implements a mapper for a Flavors-like

object-oriented system, and uses the same algorithm as Flavors to deter-

mine method inheritance. The difference is that all information is ex-

plicitly displayed to the knowledge engineer, before expensive dynamic

testing takes place.

For example, in Flavors, cyclic dependencies of objects are avoided,

but the knowledge engineer is not notified. In the TVE all cycles are

explicitly displayed.

On building the entire graph, the mapper terminates, and control

passes to the executive which creates and conm_nicates with the graphics
server.

The graphics server, on creation, generates a window for the user

interface. This window consists of a panel of test options, and a large

canvas for displaying the graph generated for the system. An additional

text sub-window is created for display of textual information about the

system (e.g., object definition or list of inherited methods).

The user can now select any test option by simply selecting that

option from the panel with a pointing device. This selection is conmuni-

cated to the executive who, in turn, invokes analyzer routines to carry

out the test. Information about any object in the system is obtained

simply by pointing at the corresponding node in the graph.

TVE has also been used for supporting the static analysis of large

31



rule-based systems. Specifically, it has been successfully tried on a rule
base containing approximately one hundred OPS5rules.

CONCLUSIONS

The purpose of this paper was to discuss some of the software en-

gineering aspects of AI programming and to describe a method and cor-

responding tools developed for testing and validating knowledge bases. The

essence of the method is that the criteria for correctness is expressed in

the form of structural properties and checked by using various graph

algorithms.

The conclusion of our analysis was that the result of the evaluation

depends on the approach to AI programming. Testing and validation of

certain AI systems which try to mimic manifestations of human intelligence

(e.g., expert systems) may be quite problematic because of the inherent

difficulties in specification and performance evaluation. On the other

side, progranming techniques which are generally used in AI programming

(e. g., declarative progranrning, symbolic programming, etc. ) offer new

opportunities for testing and validating the "knowledge base" of complex

systems. These opportunities serve as one of the main incentives to use AI

programming techniques in the design and implementation of complex sys-

tems.

This conclusion is quite contradictory to the often emphasized view,

that AI techniques are "unsafe" compared to conventional programming

techniques. The fundamental feature of knowledge-based systems is that

most of the complexity is concentrated in their knowledge base. The

dominantly declarative character of knowledge bases allows the application

of automatic testing and validation techniques that can significantly

improve the safety and reliability of large software systems.
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CLIPS AS A KNOWLEDGE BASED LANGUAGE

JAMES B. HARRINGTON
HONEYWELL SPACE AND STRATEGIC AVIONICS DIVISION

CLEARWATER FL 34624-7920

CLIPS is a language developed by Johnson Space Center (JSC) for writing expert

systems applications on a personal or small computer. The CLIPS language was writ-
ten in the C programming language and JSC made provisions to call CLIPS from, or
embed CLIPS within, a control or applications program. This paper will look at some
of the salient characteristics of a knowledge based system (KBS). The capabilities of
CLIPS will be discussed in light of these characteristics, and the KBS characteristics
of CLIPS will be compared with those of LISP, Prolog, and OPS5.

INTRODUCTION

The intent of this paper is to describe the CLIPS programming language and
compare it to three other artificial intelligence (AI) languages (LISP, Prolog, and
OPS5) with regard to the processing they provide for the implementation of a KBS.
The paper will conclude with a discretion of how CLIPS would be used in a control
system. The definition of many of the commonly used terms in the field of AI
languages will be found in this paper.

PROGRAMMING LANGUAGES

Several languages have been developed to enhance the building of KBS by
providing a direct method of encoding both data and procedural knowledge
(procedural knowledge is the knowledge of how to act on the data). The major
requirement for a language to be used for developing a KBS is that it handle strings
of characters or "symbols" as well as numbers. For the above reason Pascal and C are
more favored, among the "standard" programming languages, for developing expert
systems than is FORTRAN or assembly language. Several languages have been
developed specifically to enhance the capability to deal with symbols; of these
languages, this paper will deal with only LISP, Prolog, OPS5, and CLIPS.

The most common language for developing AI applications is LISP. LISP stands
for LISt Processing language. It was based on John McCarthy's work on nonnumeric
computation published in 1960. LISP itself does not have any constructs that provide
for explicit encoding of data and procedural knowledge, however, LISP is an
excellent symbol processing language and provides a rich set of tools that can be
used to develop the constructs desirable for a KBS.

Prolog is a relatively new language that has been developed for AI applications.
Prolog stands for Programming in Logic. It was one of the first attempts to structure
a language that would enable a programmer to specify his tasks in logic rather than
in conventional programming methods. Prolog was created by Alain Colmerauer and
his associates at around 1970.

The name OPS5 stands for Official Production System, version 5. As one might

expect, OPS5 grew out of set of OPS languages. The pilot system developed in OPS5 was
"RI" for Digital Equipment Corporation (for the VAX Expert System (ES)
configuration tool). C. Forgy and J. McDermott, of Carnegie-Mellon University, were
responsible for the development of the OPS5 language.
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CLIPS is the most recently developed language of the set to be discussed in this

paper. CLIPS is a Forward Chaining rule based system. It is being developed by the
Johnson Space Center's AI section, Mission Planning and Analysis Division, as a lan-
guage suitable for ES development and delivery on conventional computers (ie. the
IBM PC, VAX, etc.) and is intended for embedded applications. CLIPS was originally
created by Frank Lopez around 1985 and reworked for release to the public by Gary
Riley [Culbert 86]. CLIPS is an acronym for C Language Integrated Production

System.

KBS CONCEPTS

A KBS is a program or system that uses a base of knowledge to determine the
program output. A KBS language is one that enhances the capabilities of combining
data and production rules to obtain a meaningful output. The following sections
describe some of the main concepts or characteristics of a KBS.

KBS vs Conventional Languages

A KBS language could be described as a language based on a set of rules that act
like functions in a conventional language. These rules are triggered by data (or
facts) rather than program flow. All of the facts are examined by the rules on a
continuous basis. Hence the KBS code need not execute in the logical flow that it was
written. There are often mechanisms for controlling the flow of rule activation
(executing a given rule in a KBS) but in general, if the order that decisions are made
can be predetermined, and remain constant regardless of the data, then a
conventional programming languages would be a more appropriate selection.

Another important difference in the AI languages and conventional
programming languages is the way variables a handled. In the AI languages the
variable only has meaning within the particular rule in which it is located, there are
no global variables. The only method available for "passing parameters" is by
asserting a new fact on the fact list.

AI Facts

A fact can be a single element or a list of elements. Each indivisible element in
a fact is called an "atom". One of the main reasons that LISP has became so popular

for AI applications is because of its built in capability to work with lists.

Table 1 is a summary of the capabilities of each language to represent facts in
the knowledge base. The "Argument Format" column specifies weather the element's
value is based on its position in the fact list (positional) or is based on keyword
recognition. The "predicate" column refers to the association of an atom within the
fact to a header or a name; CLIPS is the only language that does not directly provide

the capability of relating atoms to a name or function, however, the programmer can
define a structure where certain positions within a fact are keywords and the other

positions are variable values.

AI Rules

The executable "code" in a KBS are rules. A rule can be viewed as a special
If/Then statement and can be partitioned into two parts. The if-part or logic section

of the rule is the part of the rule that looks for matches and relationships among the
data. The then-part or action part of the rule is activated only after the conditions in
the if-part have been satisfied.
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Language

LISP (list)

LISP (structure)

Prolog

OPS5

CLIPS

t must be atomlq

Table 1: Language Implementation of Facts*

Argument Predicate Argument
Format Name

Argument
Value

positional first list element n/a rest of list

keyword type name slot name slot value

positional function n/a argument

keyword class name attribute valuer

positional user-defined user defined valuer

LISP does not have any constructs that directly implement an If/Then type of

statement. However, LISP does have the language constructs to build If/Then type
rules that could allow multiple patterns to be matched as well as multiple actions to be

performed. Prolog, OPS5, and CLIPS each provide for multiple pattern, pattern

matching capabilities which are summarized in Table 2. In Table 2, "Conjunction"

refers to the logical ANDing of facts. "Disjunction" is the logical ORing of facts. Table
3 is a table of commonly used knowledge base operations.

Language
Feature

=,_ (equal,notequal)

<, > .... (less than,

greater than . . .)

Computed expressions

Type test

Negation, Conjunction

Disjunction

Nesting of Conditions

Table 2: If-part Pattern Matching**

Prolog OPS5 CLIPS

any term

any term

Yes (if-part only)

atom, number,
variable

predicate, argument

predicate, argument

Yes

number, symbol,

predicate
number

No (then-part only)

number, symbol

predicate, argument

argument

No

number, symbol,
function

number

Yes (both parts)

atom, number

argument, function

argument, function

Yes

File I/0

A key part of the KB operations is the capability for interfacing with a

"permanent" data base. A permanent data base is usually stored on magnetic disk,

thus the capability to interface with a permanent data base relies on file I/O

capabilities. Of the four languages, LISP has the most extensive set of I/O capabilities;
OPS5 has the smallest set.

CLIPS has two sets of I/O file commands: the first is for saving and retrieving

program files; the second is for saving and retrieving facts. The CLIPS facilities for

saving rules from the CLIPS environment will save only the rules; there is no top

*Expanded from [Cugini 87], Table 3, p. 20.

**Expanded from [Cugini 87], Table 4, p. 23.
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level command (like SAVE) to save the facts in the fact list or any "deffacts" state-

ments (deffacts is a CLIPS construct that allows the user to develop a set of facts).

CLIPS will load both rules and facts if the program file is created with an external

text editor and the deffacts construct is used. During CLIPS program execution, CLIPS

does support reading facts from, and writing facts to, disk files.

Operation

LISP:

add

add

modify
delete

Prolog:

add
add

delete

delete
add

replace

OPS5

add

modify
delete

add

CLIPS:

add

add

add

delete

Table 3: Operations Of Rules On Facts*

Number of Type of Source Language

KB objects KB obiects Statement

Rule-part containing
the Statement

many fact, rule file

one fact, rule program

one fact, rule program

one fact, rule program

fact, rule

load user-defined

make-x user-defined

setf user-defined

remove, user-defined

remhash .... user-defined

one fact program
one fact, rule program

one fact, rule program

many fact, rule program

many fact, rule file
many fact, rule file

implicitt then
assert if

retract if

abolish if

consult if
reconsult if

one fact program

one fact program

one fact program

one fact program

make then

modify then
remove then
build then

many fact

many fact

many fact

many fact

file read <file> then

keyboard read then

program assert then

program retrace then

t does not persist--derived and then discarded.

Table 4 is a summary of the I/O features of the four languages. "I/O language
objects" refers to the ability to read objects as elements; each read associates a

variable with an atom. "I/O characters" refers to the capability to read the external

file a character at a time. "I/O binary" refers to the capability of treating an input as

a set of bits where each bit may have a specific meaning. The user can modify the

CLIPS source code to provide both character and binary input capabilities. "Line

input" is the capability to input a line of data at a time regardless of the number of
elements associated with the data line. "Pseudo-I/O" is the capability to treat internal

memory as an I/O buffer and manipulate memory using I/O routines. "User control"

of the input and output refers to the facilities the user has to control the format of

the inputting and outputting of data. "Rename and delete files" refers to the

capability to access system file commands form the language environment. The

*Expanded from [Cugini 87], Table 5, p. 25.
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newer versions of CLIPS do provide access to the DOS commands but access is system
dependent.

Features

File types

I/O language objects
I/O characters

I/O binary
Line input

Pseudo-I/O

User control of input
User control of output
Rename and delete files

Table 4: Files and I/O Features

LISP Prolog OPS5 CLIPS
Sequential and

Random
Yes
Yes
Yes
as characters

Sequential Sequential

Yes Yes
Yes

Sequential

Yes
User enhancable
User enhancable

as language as language
objects objects

Yes

Many Features Some Few
Many Features Some Few Many Features
Yes Yes New Versions

Inference Engines

The inference engine is the part of the language that derives the response to a
set of facts. It is responsible for selecting which rules will be fired in which order.

The top level of the inference engine is how (or in what order) the facts are
processed. Two of the most common terms used to describe the control strategy of
rule firing are forward chaining and backward chaining. Forward chaining starts
with a set of facts and processes facts with rules until it has reached some conclusion

or until there are no more facts to process. Backward chaining starts with a conclu-
sion or assertion of a condition and then checks the facts to determine if the condi-

tion can be supported. Backward chaining is extremely useful in any system where
the program may be asked why it chose a specific course of action.

Another consideration for control strategy is the selection (or decision) of
which rule to fire next. Rule activation relies on "control knowledge." The relation-
ship between rules and control knowledge is that, "rules capture knowledge about

how to transform data; control knowledge is about when to transform data" ([Cugini
87] p. 15, my italics). The commonly used terms for the decision making process are:
Depth-first, Breadth-first, Recent-first, Best-first, and Heuristic [Cugini 87].

Prolog is a backward chaining system that processes facts in a depth-first
fashion. A depth-first system tries to process as far down one decision path as
possible until a block is encountered (in the form of an unsupported fact or improper
conclusion). When a block is reached, a depth-first system will back up to the last
successful node and proceed down the next alternate path. This process continues
from left to right across the "decision tree" until the solution is found or all decision
paths are exhausted.

Both OPS5 and CLIPS use forward chaining systems with recent-first fact pro-
cessing. The recent-first technique does not necessarily progress toward an answer.

In a recent-first system, the most recently asserted facts are given more weight so
that rules using these facts would be fired first (unless there is some other weighting

*Expanded form [Cugini 87], Table 8, p. 52.
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system which might override the rule firing order). Both OPS5 and CLIPS will con-
tinue to process facts until each rule has processedeach applicable fact.

It is important to note that just because a language was designed around a
specific type of inference engine, that language is not locked into that role. There
are many caseswhere Prolog has been used to implement a forward chaining system.
Likewise, OPS5 and CLIPS have been used to create backwardchaining systems.

User Interface

Any good language will provide tools to aid in debugging of the source code. The
most often used tools are: trace features (which will indicate which line of code is

being executed), break points (where the number of lines to be executed is specified
or an event is specified which will stop execution), and printing out changes in the
values of variables. In some languages these tools must be written as part of the

source code.

Table 5 is a summary of the user interface features that might be used for

debugging a KBS. "Top-level control" refers to the process of invoking or running
the KBS. The section on "watch derivation" refers to watching the "thinking"

process of the KBS as it moves toward its end point. The "pause and step" features
refer to the KBS executing a set number of cycles or instructions. Either before the
KBS is executed or during a pause in the execution of a KBS a user may want to
"inspect the KBS" (it's facts, it's rules, and the agenda--also known as the conflict list-
-for rules pending execution). "Manipulate KB" refers to the process of adding, or
deleting, facts and rules during a pause in the KBS execution. "Manipulate
derivation" refers to controlling the KBS during execution.

Embeddability

Of the four languages discussed, CLIPS is the only language that was designed to
be embedded within another system. When CLIPS is purchased, the C source code is

also supplied. The CLIPS User's Guide, Reference Manual, and Update notices supply
information for customizing CLIPS and embedding CLIPS within other systems. The
instructions are written around the Latice C compiler for the IBM PC however there

is some information related to using the Lightspeed C compiler on the Macintosh.

Miscellaneous Language Features

CLIPS provides language constructs to perform algorithmic types of tasks. These
constructs include If/Then/Else, and Do-While statements which can be executed in

the then-part of the rule. Another feature that is useful in CLIPS is the ability to
assign "weights" (call salience values) to rules. The rule with the highest salience
value is the rule that will fire next. Once all of the criteria are met to satisfy the if-

part of the rule the then part of the rule can then assert or retract facts required to
control the flow to the next rule to be fired. The process of controlling some of the
flow of rule firing, and the use of algorithmic constructs within a rule, greatly
enhances CLIPS capability to perform systems simulations as well as making it easier
for a conventional programmer to understand some of what is happening within the

CLIPS program.

In addition to the language constructs provided, the user may also customize

CLIPS for a particular task. The CLIPS User's Guide provides an example for adding a
random number generator to CLIPS. The process shown in the User's Guide will work
for any function associated with the then-part of the rule. The user could add
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functions to convert an atom into a set of characters, or to read binary input from a
data file, or developing drivers for special equipment (ie. software drivers for

turning on and off solenoids). The capability of customizing CLIPS is an important
strength to the language.

Table 5: User Interface Features*

Language
Feature

Top-level control:
invoke derivation

exit derivation

exit system

Watch derivation:

complete

selective

Pause and step:

pause from program

pause at named entity

pause after n cycles

asynchronous interrupt

step thru named entity

step thru all

Inspect KBS

named KB object

matching KB object

_leriva_i0n-state

Manipulate KB:
add KB object

delete KB 9biect

Manipulate derivation:
abort

backup program cycles
continue

suspend derivation

LISP Prolog OPS5 CLIPS

Yes Yes Yes Yes
Yes

undefined Y_ y_ Y_

Yes Yes Yes

Yq_ Yq_ Yq_

Yes Yes Yes
Fact or rule Rule

Yes Yes

Yes,
via statement

Yes

Yes

Yes

Yes Yes, via run Yes, via (run 1)

Yes Yes

Yes

Goal stack

Yes Yes, facts as a list

rules by name.

Fact only

Conflict set (7.onflic_ set

Yes

Yes
Facts only Facts only
Ye_ Yes

Yes

Yes Yes
Yes Yes Yes

Yes

System dependent

Yes (from

program errors)

Yes (on program

errors)

A CLIPS APPLICATION

The CLIPS language is a good choice for writing a control system or simulation

of a control system. The rule based nature of the CLIPS language provides an

intuitive and quick medium for developing control rules.

As an example, a system designer required that a pressure of a vessel should

never exceed 95 psi, and that at 75 psi a warning message should be sent to the

operator. The types of rule that would be used to realize this control would be:

*Expanded from [Cugini 87], Table 6, p. 30.
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(define rule: Warning-message
if (vessel-pressure => 75) => (then) (printout "Warning--vessel pressure has

reached " (vessel-pressure/95)*100 " percent capacity))

(define rule: Activate-pressure-relief-valve
if (vessel-pressure => 95) => (then) (open (pressure-valve-3)) and (printout

"Warning--vessel pressure critical. Relief valve has been activated"))

These rules are not in the CLIPS rule format because the language syntax would look

confusing without sufficient explanation. The rule structure is similar though.

Though this in not AI in the strict sense, the rules are capturing the "rules of
thumb" that the expert (the system designer) would use to control the system. The
real strength of using CLIPS for the control language is that each rule stands on its
own, any modification to the system would occur on a rule to rule basis with a
minimal to other rules (ie. changing the name of a variable in one rule will have no
effect on the function of another rule). For these reasons, Honeywell is reviewing
CLIPS as a candidate language for demonstrating embedded ES capability in
controllers for the Space Station.

CONCLUSIONS ABOUT CLIPS

Of the four languages, LISP is the most flexible but requires the most work to
produce an ES. If the KBS requires high levels of flexibility or different types of
inference operations during a single session then LISP would be the better choice of
languages. Prolog and OPS5 provide a faster route for developing an ES, while also
being easier to maintain, but at the expense of execution time and system memory.

Because of its embedability, its expandability, and its smaller size, CLIPS would be
the better selection for embedding low-level ES capability within a control system.
CLIPS is similar to OPS5 in its general operation. CLIPS is ment for use on personal
computers or smaller computer systems and is the only language that was developed
for embedded applications (putting ES capability into another system). Control

systems inherently require forward chaining data processing to move from sensor
inputs to a controlled output. The forward chaining rule base characteristics of
CLIPS make it a good language for developing control systems.
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ABSTRACT

This paper describes an expert system development shell for

diagnostic systems, the Diagnostic System Development Shell

(DSDS). The major objective of building the DSDS is to create a

very easy-to-use and friendly environment for both types of users

-- knowledge engineers and end-users. The DSDS is written in OPS5

and CommonLisp. It runs on a VAX/VMS system. A set of domain-

independent, generalized rules is built in the DSDS, so the users
need not be concerned about building the rules. The facts are ex-

plicitly represented in a unified format. These features make the

DSDS very easy to use. A powerful check facility which helps the

user to check the errors in the created knowledge bases is

provided. A judgment facility and other useful facilities are

also available. A diagnostic system (DS) developed based on the

DSDS system is question driven and can call or be called by other

knowledge-based systems written in OPS5 and CommonLisp. A

prototype DS for diagnosing a Philips constant potential X-ray
system has been built using the DSDS.

i. Introduction

Recently, expert systems have been applied to a variety of

fields such as medicine, finance, engineering, and science [4,5].

The number of expert systems developed has doubled annually since

the late seventies [2]. This rapid increment of the number of ap-

plications has led to the appearance of a wide range of commer-

cially available expert system tools or so-called expert system

development shells. Currently, these expert system tools are

responsible for about 85% of fielded systems [3]. Most of the
shells are powerful and fancy. But they are complex. Reference

manuals with hundred of pages are not uncommon. It takes a rela-

tively long time to learn them and to use them effectively. In

addition, users are supposed to have some background in AI tech-
niques and programming languages. In general, even with the shell

available, developing an expert system is not a trivial task. For

instance, in building of a medium size rule-based expert system
hundreds of rules have to be created. Many issues such as the

overall system structure and control schemes have to be con-

sidered by the user. Thus, it is desirable to create an environ-

ment that would take away the burden of learning a complicated

development shell and creating rules that are related to the

domain knowledge. In addition, this shell could be easily used by

the system designer and end-users alike. With this objective in

with the Aircraft Engine Business Group of General Electric
Co., Evendale, Ohio.

**
with Department of Computer Science, University of Cincinnati.
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mind, the Diagnostic System Development Shell (DSDS)
dev_ioped and is presented in the next sections.

has been

Both the system architecture and its major components are
presented in Section 2. A prototype diagnostic system (DS)
developed by the DSDS is discussed in Section 3 and, finally, the
concluding remarks are in Section 4.

2. The Diagnostic System Development Shell
The Diagnostic System Development Shell (DSDS) is a software

utility that allows users, who know little about AI concepts,
techniques, and any high level computer languages, to develop
diagnostic systems and to use them.

Unlike the existing tools, there is a set of domain-

independent, generalized rules in the DSDS. All the user needs to

consider is the coding of domain knowledge (facts only) into

knowledge bases. The facts, which are explicitly represented in

lists with a unified format, are organized in nodes of decision
tree structures. These features make both the DSDS easy to use

and the knowledge base easy to build, modify, and expand. To

monitor and to help users in building the DS a powerful check

facility in the DSDS can pick up most of the possible mistakes
the user might make. Since no AI techniques and programming

skills are required, the domain experts can concentrate on coding

the domain knowledge. A number of facilities, which include

judgment, explanation, and help with graphics, will make the end-

users feel the system is more friendly and convenient to run a DS

developed by the DSDS.

2.1 Architecture of DSDS

The DSDS consists of eight major components. They include

the generalized rule set (GRS), the fact knowledge base (FKB),

and facilities such as the checker, the helper, the explainer,

the judger, the DCL LISP interface and the graphic displayer.

Among these components, the GRS, the FKB, and the checker are

more important and unique. They will be discussed in the rest of
this section.

The system architecture of the DSDS is shown in Figure i.

The built-in generalized rule set is in charge of reasoning. In

the development mode of a DS, the user inputs domain knowledge

into the FKB through an editor and invokes the checker to check

the related LISP syntax and the node semantic rules.

During the execution of the DS, the system interacts with
the user by generating questions to the user. The answers

provided by the user will be checked by the judger which will

identify and treat all the possible incorrect answers. The helper
offers help with graphics when the user asks for. The DCL LISP

interface makes it possible to use DCL under the OPS5 and COMMON-

LISP environments. The graphic displayer are Fortran programs

that displays graphics when help is provided. The explainer

provides explanations of 'why' and 'how'.
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Figure i. The Architecture of the DSDS system.

2.2 The Generalized Rule Set

The GRS contains the rules that will control the reasoning

process while traversing down a decision tree during a diagnosis.
The generalized rule set is based on two assumptions. One is that
there is only a single source of error and the error is not

transient. This assumption, as can be seen in most of the

troubleshooting guides, is common in the field of diagnoses
[1,7]. In fact, if there are more than one error source, the DS
may be run several times to isolate all of them.

The other assumption is that the decision trees, on which

the DS is based, are basically binary trees. The branches of

every node of the decision trees represent two opposite
propositions, yes and no, or positive and negative. This assump-
tion fits diagnostic procedures well. The "car won't start"

problem [6] is a typical example. Actually, the the binary tree
structure may become a type of graph in which a node still has

only two children, but different nodes could share a child, one
node's children could be its parents or ancestors.

To illustrate the GRS, assume a simple, generic, binary
decision tree of five nodes is given, in which the nodes N1 is
the parent node of the nodes N2 and N3, and the node N3 is the

parent node of the nodes N4 and N5. The nodes of the decision

tree contain domain dependent facts, which will be described in

the next section. Also, assume that in the node NI, a diagnostic
test is being made and either answer yes or no is obtained. If

yes, the node N2 will be pursued. In this case, N2 is a leaf that

means a set of conclusions can be generated, problem related sug-

gestions can be listed, and explanations be provided. If no, N3

is pursued and facts in node 3 will identify that this node is
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not a leaf and a new series of actions such as generating inter-
mediate status or results, continuing further testing, or other
diagnostic actions are triggered. The process repeats for each
node traversed until a leaf node of the decision tree is
encountered.

2.3 The Fact Knowledge Base
Since the GRS is built in, the knowledge base includes facts

only. So the knowledge bases in the DSDS are regarded as the fact
knowledge bases. Facts, which are represented in lists, are or-
ganized in nodes of decision trees. Information related to a node
is included only in the corresponding list, which consists of
attribute-value pairs. All the lists are defined by a unified
LISP format. There are three types of attributes: the necessary,
the link, and the optional attributes. Each node list has all the
necessary and link attributes and part of optional attributes.
There are some syntax rules, which specify that the value types
of certain attributes should be symbols or strings. There are
also some semantic rules, which stipulate relations between
attributes.

The FKBs are accessed by the generalized rules and trans-
ferred into OPS5 working memory. Unlike the generalized rules,

the FKBs can be developed, modified and expanded by the user.

2.4 The Checker

Since the FKBs are defined by LISP functions and the users

are supposed to know nothing about LISP. Some facilities should

be available to avoid making mistakes. Two kinds of facilities

could be helpful. The first is a special interactive interface

which asks users questions, interpreters the answers and codes

them into FKBs. But with this approach the users may easily get

bored, especially all the facts are represented in the same way,
the user will be asked the same questions repeatedly. The other

way is to provide a check facility. Users can code the facts into
FKBs directly through a text editor, then use the checker

facility to check the developed FKBs. Since the facts are repre-

sented in a unified format, the second approach is more effective
in the DSDS.

The checker is able to pick out related LISP syntax errors.

It withdraws the decision trees from the built FKBs and displays
them on the CRT. In addition, the checker can check the semantic

rules. Once the checker picked out some error, it would print out

error message, analyze the error and give the possible causes of

the error. If a fatal error happens, the checker will stop
working. Otherwise, it will continue to check until all the FKBs
are checked.

3. An X-ray System Diagnostic System

A prototype -- an X-ray system DS was built by using the

DSDS on VAX/VMS system. It is a DS for diagnosing a PHILIPS Con-

stant Potential X-ray system. The X-ray system consists of two

major units, the high voltage power supply and the computerized
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controller. The controller contains nine printed circuit boards.
The domain expertise came from the troubleshooting part of the X-
ray system service manual and a domain expert. Based on this ex-
pertise twenty three decision trees corresponding to the same
number of symptoms were built. The FKB includes 19 files with
more than 5000 lines of code. The Checker was used to pick out
all the syntax and semantic errors. To reduce the search space,
this DS isolates the faults at four levels. The diagnostic proce-
dure first finds out the fault is in the controller unit or in
the high voltage power supply unit. Secondly, it isolates the
faults in a certain board, then in a certain circuit and finally
in a replaceable component.

4. Conclusion
An easy-to-use and friendly environment for designing diag-

nostic systems has been presented. The major features of the sys-
tem are that the knowledge representation and input are
facilitated by a unified list format and the reasoning of the ex-
pert system is done by the built-in generalized rule set. No pre-
vious knowledge of AI techniques and programming languages is
required. The user needs only to concentrate on coding the domain
knowledge into the so-called FKBs.

Overall the system is very straightforward to use. The
prototype, explained in Section 3, has shown that the main objec-
tive of the DSDS system has been achieved. As a minor flaw of the
implementation, the display of graphics is rather slow, since the
process of generating graphics in VAX/VMS is complex. The OPS5
program has to call the display program written in Fortran via
Lisp, DCL, and the display program has to get the data from disk.
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Abstract. This paper describes the implementation of an inference engine for embedded

diagnostic systems. This system consists of two distinct parts. The first is an off-line

compiler which accepts a propositional logical statement of the relationship between facts

and conclusions and produces the data structures required by the on-line inference engine.

The second part consists of the inference engine and interface routines which accept asser-

tions of fact and return the conclusions which necessarily follow. Three design goals of this

inference engine are emphasized. First, it is logically sound. Given a set of assertions it

will generate exactly the conclusions which logically follow. At the same time, it will detect

any inconsistencies which may propagate from an inconsistent set of assertions or a poorly
formulated set of rules. Second, the memory requirements are fixed and the worst-case

execution times are bounded at compile time. Third, the data structures and inference al-

gorithms are very simple and well understood. This system has been implemented in Lisp,
Pascal, and Modula-2. The data structures and algorithms are described in detail.

Introduction

Advanced aircraft and spacecraft are becoming increasingly reliant on onboard elec-

tronic systems. At the same time, onboard electronic systems are becoming increasingly

complex, interrelated, and interdependent. Because of this reliance, it is necessary to con-

stantly validate the behavior of onboard electronic systems, and when errors are detected,

to quickly identify and isolate the faulty subsystems. Advances in artificial intelligence

technology make it possible to construct embedded diagnostic systems which can monitor,
validate, diagnose, and when necessary, deactivate critical onboard systems.

Embedded diagnostic systems impose implementation constraints which eliminate the

use of most of the commercially available artificial intelligence tools. The implementation

language and target processor are often dictated by contract. The memory requirements

must be bounded and modest and the inference cycle must be bounded and predictable.
The reliance on such systems for mission safety and success dictates that the behavior of

the inference engine be demonstrably correct.

Many validation and diagnostic problems can be represented and solved entirely within

the framework of zero-order (propositional) logic. For example, those problems which have

traditionally been solved using decisions tables, debugging flowcharts, or decision trees

involve a finite number of facts having true or false values which in turn are logically
related to a finite number of intermediate and final conclusions. Generic facilities for the

construction of embedded diagnostic systems are provided in the Zero-Order Environment

for Test and Analysis (Zeta) described below.

Research supported in part by the McDonnell Douglas Independent Research and

Development Program.
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Design Goals

The architecture and implementation of Zeta were guided by several design goals.

Emphasis was placed on achieving generality and simplicity without sacrificing correctness

nor capability.

The first goal was to make the system independent of any specific programming lan-

guage or computer architecture. This would allow the system to be implemented with

familiar programming languages on conventional architectures. At the same time, specific

onboard computer architectures would not be eliminated, nor would special Lisp or Prolog

architectures be excluded. This goal further requires that the data structures and algo-

rithms be documented in sufficient detail that a new implementation in a new environment

can be produced quickly.

The second goal was that the inference engine be generic. It should be possible

to adapt a working inference engine to new diagnostic problems simply by creating and

compiling the knowledge base for those new problems. A working implementation of the

inference engine should be available as re-usable, off-the-shelf software.

The third goal was to make the inference engine demonstrably correct. Given a knowl-
edge base which defines the logical relationship between observations and conclusions and

given a set of assertions the inference engine should generate exactly the conclusions which

logically follow. At the same time it should detect any inconsistencies which may propa-

gate from an inconsistent set of assertions or a poorly formulated set of rules. Moreover,

it should be possible to establish these properties from an analysis of the data structures

and algorithms.

The fourth goal was to make the inference engine operate successfully and correctly

with partial information. It should be possible to assert facts one at a time. With each

assertion, the inference engine should be able to derive exactly those conclusions which

follow from the aggregate of the present and preceding assertions.

The final goal was that, given a fixed knowledge base, the inference engine should have

time and memory requirements which are both bounded and modest. This goal strongly

influenced the choice of data structures and algorithms; it required the introduction of

certain optimizations; and it also placed some limitations on the acceptable forms for a

knowledge base.

External Knowledge Representation

The input to this system is a formula composed of the logical operators and, or,

xor, not, and implies, parentheses for constructing sub-expressions, and symbols, which

denote propositional parameters of the system under consideration. There is no explicit

distinction between observations and conclusions. The input formula simply identifies the

relevant boolean parameters of the system and the logical relationships between them.

The input formula can be a conjunction of rules of the form (antecedent implies

consequent) but the input can be considerably more general than that allowed by most

familiar rule-based systems. Most rule-based systems require statements in the form of an

implication with additional restrictions that disjunctions (or more complicated expressions)
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arenot allowedin the consequent.For example,the phrase(alpha xor beta xor gamma)
is very hard to formulate in a traditional rule-basedsystemwithout enumerating one rule
for eachrelevant combination of alpha, beta, and gamma. The input to this systemcan be
an arbitrary boolean formula (with somelimitations imposed only to eliminate syntactic
ambiguity).

The only significant restriction on the input is semantic. It is assumedthat the
inferenceengine will only be used for mapping observationsinto conclusionsand will not
be used to derive new rules or prove theoremsabout the interrelationships betweenrules.
For example, given the rule (((alpha implies beta) and gamma) implies delta) and
a separaterule (alpha implies beta) it is certainly true that (gamma implies delta).
However,the detection and resolution of all suchinter-rule relationships would be too time
consumingto perform on-line. To guaranteeboundedtime and spacerequirementsfor the
inferencecycle, it is assumedthat all suchcombinations of rules have beenidentified and
resolvedbeforehand.

Internal Knowledge Representation

While the input to this system may be an arbitrary propositional formula, a much
more regular structure is required for an efficient on-line inferencecycle. For that reason,
ZETA is composedof two parts. An off-line compiler which normalizes the given propo-
sitional formula and an on-line inferenceengine which performs the deductive processes.
This normalization proceedsin four stages.First, expressionsinvolving xor and implies
are mapped into expressionsinvolving only the operators and, or, and not. Second,
all negatedsub-expressionsare recursively rewritten using deMorgan's law, resulting in a
formula composedonly of and_ or, and positive or negativepropositional variables. (Here-
after, positive or negativepropositional variableswill be referred to as literals. Third, the

given formula is converted to conjunctive normal form through applications of the boolean

distributive law, resulting in a conjunction of disjunctive clauses which in turn are com-

posed only of literals. Finally, each disjunctive clause is mapped into a sequent of the

form (conjunction implies disjunction). The natural interpretation of a sequent is that

the truth of each literal in the antecedent implies the truth of at least one literal in the

consequent. By convention, an empty antecedent is implicitly true, while an empty conse-

quent denotes a contradiction. The sequent constructed from a disjunctive clause consists

of an empty antecedent and a consequent identically equal to the given clause. Deductive

processes which may be applied to sequents are discussed in the next section.

Inference Algorithm

Activities of the on-line inference engine are driven by a series of assertions and retrac-

tions of fact. It is useful to allow both assertion and retraction for very practical reasons.

During development of a knowledge base, the knowledge engineer may wish to establish

a particular state of the inference engine and then explore situations which can emanate

from that state. It would be laborious to repeatedly reset the inference engine and then

carry it to each situation through a series of assertions. Instead, it is better to be able

to assert a fact, to determine its effect, and then to retract that fact in order to explore

the immediate effect of other faults or conditions. On-line, this ability can be used to

ensure the integrity of the diagnostic process in time critical situations. For instance, some

physical conditions are intermittent. In a time-critical situation it would be risky to reset
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the inference engine and repeat the entire history of observations and assertions simply

because an intermittent physical condition no longer holds. In other situations it may be

discovered that a sensor itself is faulty. Again, time may not permit a complete reset of

the inference engine just to remove the conclusions derived from that erroneous sensor.

The inference cycle begins by placing an assertion on an agenda of activities to be

performed. On each inference cycle one item is removed from the agenda and processed,

but additional items may be placed on the agenda as a result.

The first step in processing an assertion is to determine whether it is consistent with

the present state of the inference engine. Three conditions may hold. An assertion is

an assignment of a boolean value to one of the propositional variables. If the variable is

presently undefined, then any assertion for that proposition is considered to be consistent.

If the variable presently has a value, and the value to be bound to that proposition is the

same, then the assertion is considered to be redundant. However, if the variable presently

has a value but it differs from the value to be bound to that proposition, then the assertion
is considered to be inconsistent.

The second step in processing an assertion is to derive any conclusions which necessar-

ily follow. This step is unnecessary for redundant assertions and must not be performed

for inconsistent assertions. Given the semantic restrictions on the knowledge base dis-
cussed above, the derivation of necessary conclusions is both correct and efficient. This is

accomplished by two techniques. First, the inference engine makes use of an index, con-

structed when the knowledge base was compiled, and inspects only those sequents which

can potentially produce a conclusion from the given assertion. The index does increase the

memory required to store the knowledge base by approximately a factor of two. However,

the additional memory requirement can be more than offset by the following guarantee.

The time required to process an assertion is independent of the size of the knowledge base;

instead, it is related to the number of sequents which contain a given literal, and upon the

number of conclusions which depend upon it. Second, instead of evaluating or analyzing a

sequent, the inference engine applies a very simple rewriting rule based upon the natural

interpretation of a sequent. Given an assertion that a literal L should be true, and given a

sequent which contains not-L in its consequent, then some other literal in the consequent

must be true. Hence, remove not-L from the consequent and include L in the antecedent.

If only one literal remains in the consequent after this rewriting, then that literal must be

true and an appropriate assertion is placed on the agenda.

A significant advantage of this sequent representation and method of inference is that

assertions are reversible by retraction. The inference cycle begins by placing a retraction

on the agenda. On each inference cycle one item is removed from the agenda and processed.

As before, other retractions may be placed on the agenda as a result.

Like an assertion, a retraction is consistent if the value to be removed is equal to

the value which a variable presently holds; it is inconsistent if the value to be removed

is the opposite of the value which the variable presently holds; and it is redundant if the

variable is presently undefined. There is an additional case. The value to be removed may

match the value which the variable presently holds, but that value may be required or

supported by the consequent of some sequent. Therefore that retraction would introduce

an inconsistency if performed and is considered to be impossible. As with an assertion,
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a retraction is performed only if it is consistent with the present state of the inference

engine.

The process of rewriting sequents under retraction is the reverse of the assertion

process described above. Given a retraction of some literal L, and given a sequent which

contains L in its antecedent, first inspect the consequent of that rule. If only one literal

remains in the consequent before this rewriting, then this retraction may necessitate the

retraction of the consequent as well. If no other sequent supports this consequent, then

place the appropriate retraction on the agenda and perform the rewriting: remove L from

the antecedent and include not-L in the consequent. If the consequent has other support

before the rewriting, or if the consequent contains more than one literal, then perform only

the rewriting step.

Architecture

The architecture of this system can be sketched at two levels. At the highest level

the system consists of two separate programs. The first accepts a propositional forlnula

which defines the logical relationship between the boolean parameters of the system to

be monitored. The output of the first program is tile program fragments _lecessary to

declare and initialize the data structures for the second program. The second program

is produced by combining these program fragments with the off-the-shelf code for the

inference engine. This two-stage process removes any parsing and normalization costs
from the on-line system and it produces a diagnostic program of minimal size.

The lower level structure of the first program is not significant. The program can be

viewed as a black box which performs the compilation function. Tlle structure of the second

program is significant. It provides the interface to the inference engine. This interface
includes an initializing procedure which resets all propositional values to undefined and

rewrites every sequent to the form (() implies disjunction). There is a procedure for

making an assertion which requires two parameters, a propositional identifier and a value

to be bound to that variable, and which initiates the inference cycle described above.

There is a procedure for making a retraction which requires only a I)ropositional identifier,
assuming that the user wishes to retract the present value of the given proposition. All

deductive results produced during an inference cycle are placed on a stack; these results

can be retrieved one at a time by simple procedure calls. Other procedures exist which

will return the present value of a proposition, its symbolic name, etc.

Conclusion

The Zero-Order Environment for Test and Analysis system has characteristics which

make it suitable for embedded diagnostic systems. Notably, the representation and meth-

ods of inference are independent of any specific programming language or computer ar-
chitecture; the time and memory requirements are modest and the upper bounds may be

determined prior to run time; the inference engine is generic and can be adapted to new

applications by introducing a new knowledge base; the inference engine is demonstrably

correct generating exactly the conclusions which follow from a given set of assertions while

detecting any inconsistency; the inference engine complements the facility for incremental
assertion with a facility for incremental retraction.
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Abstract

The 'C' Language Integrated Production System (CLIPS) is a forward chaining
rule-based language developed by the Artificial Intelligence Section at NASA/Johnson
Space Center. This paper examines the requirements necessary in an expert system
tool which is to be used for development, delivery, and training. Because of its high
portability, low cost, and ease of integration with external systems, CLIPS has great
potential as an expert system tool for delivery and training. In addition, its representa-
tion flexibility, debugging aids, and performance, along with its other strengths make it a
viable alternative for expert system development.

Introduction

Expert system technology is a major subset of Artificial Intelligence and has been
aggressively pursued by researchers since the early 1970's. In the last few years, both
government and commercial application developers have given expert systems con-
siderable attention as well. An entire industry has grown to support the development of
expert system tools and applications, with a wide variety of both hardware and software
products now available. The availability of expert system tools has greatly reduced the
effort and cost involved in developing an expert system.

Despite all this, expert systems have generally failed to make a major impact in
application environments. This failure has stemmed from tool vendor's overemphasis
on expert system development environments to the detriment of options for delivery of
expert systems and training in expert system technology. Viable delivery options are
necessary to field expert systems. Training options in expert system technology are
necessary for the widest possible dissemination of this technology.

The 'C' Language Integrated Production System (CLIPS) is a forward chaining
rule-based production system developed by the Artificial Intelligence Section at
NASA/Johnson Space Center. Version 1.0 of CLIPS, developed in the spring of 1985
in a little over two months, accomplished two major goals. The first of these goals was
to gain useful insight and knowledge about the construction of expert system tools and
to lay the groundwork for future versions. The second of these goals was to address the
delivery problems of integrating and embedding expert systems into conventional envi-
ronments. Version 1.0 successfully demonstrated the feasibility of continuing the pro-
ject.

Subsequent development of CLIPS greatly improved its portability, performance,
and functionality. A reference manual[2] and training guide[5] were written. The first re-
lease of CLIPS, version 3.0, was in July of 1986. The latest version of CLIPS, version

_:_ECEDtNG PAGE BLANK NOT FILIVED
53



4.1, was completed in September of 1987. CLIPS is currently available through
COSMIC (see appendix).

The development of CLIPS, though not a significant advance in expert system
representation capability, is a significant advance in the concept of providing a low cost
tool that can be used for training, development, and delivery. The use of CLIPS in these
areas will be examined in this paper with special emphasis on CLIPS's capabilities as
a delivery and training tool.

Delivery

CLIPS addresses several issues key to the use of an expert system tool for de-
livery. Among these issues are: the ability to run on conventional hardware; the ability
to run on a wide variety of hardware platforms; the ability to be integrated with and em-
bedded within conventional software; low-cost delivery options; the ability to separate
the development environment from the delivery environment (i.e. run-time modules);
the ability to run efficiently (both speed and memory), and migration paths from devel-
opment to delivery environments.

One major requirement for a delivery tool is the ability to run on conventional
hardware. Current state-of-the-art expert system software tools are almost all based in
LISP and run only on specialized LISP hardware, such as the Symbolics or TI Explorer,
or on the new generation of workstations such as the SUN or Apollo. While these work-
stations do provide a conventional platform for delivery, investment in conventional
hardware often precludes adding additional or specialized hardware to support expert
systems. The question to ask when considering delivery is not "Is there a conventional
machine that supports the expert system tool I want to use?", but rather "Does the con-
ventional machine I have support the expert system tool I want to use?"

Portability of the expert system tool code insures the ability to deliver on a wide
range of hardware from microcomputers to minicomputers to mainframes. Because
CLIPS is written in C and special care was taken to preserve portability, CLIPS is able
to provide expert system technology on a wide variety of conventional computers.
CLIPS has been hosted on over a dozen brands of computer systems ranging from mi-
crocomputers to mainframes without code changes. To maintain portability, CLIPS uti-
lizes the concept of a portable kernel. The kernel represents a section of code which
utilizes no machine dependent features. To provide machine dependent features, such
as windowed interfaces or graphics editors, CLIPS provides fully documented software
hooks which allow machine dependent features to be integrated with the kernel.

The ability to integrate with and embed within existing code is an important feature
for a delivery tool. Integration guarantees that an expert system does not have to be
relegated to performing tasks better left to conventional procedural languages. It also
allows existing conventional code to be utilized. The capability to be embedded allows
an expert system to be called as a subroutine (representing perhaps only one small
part of a much larger program). Many tools view themselves as the "master" program
and only permit control to be passed to other programs through them. CLIPS allows
integration with C programs as well as integration with other languages such as
FORTRAN and ADA. In addition, many functions are provided which allow CLIPS to be

54



manipulated externally. Because the source code is available, CLIPS can be modified
or tailored to meet a specific user's needs.

Applications should be delivered as economically as possible. Many tools require
the entire development environment to run an application. This necessitates buying a
new copy of the tool for every delivered application. Some tools provide the capability
to generate run-time modules. These run-time modules are basically equivalent to the
executable modules generated by compilers for procedural languages. Run-time mod-
ules allow the unneeded functionality and information associated with the development
environment to be stripped away from the delivery environment. This is a desirable
characteristic, but for many tools, each copy of a run-time module must be purchased.

CLIPS effectively addresses the problems of low cost delivery. The cost for CLIPS
source code is $200. This initial cost provides unlimited copies of CLIPS for delivery,
development, and training. In addition, CLIPS also provides the capability to generate
run-time modules.

Another key feature for a delivery tool is efficiency. CLIPS is based on the Rete al-
gorithm[3] which is an extremely efficient algorithm for pattern matching. CLIPS version
4.1 compares quite favorably to other commercially available expert system tools based
on the Rete algorithm. CLIPS performs its own memory management, eliminating the
problems associated with garbage collection that plague most LISP based expert sys-
tem tools.

A good delivery tool should also provide a graceful migration from the develop-
ment environment to the delivery environment. CLIPS was designed to be as compati-
ble as possible with other forward chaining rule-based languages. Thus the capabilities
of CLIPS closely mimic the forward chaining capabilities of tools such as ART[l] and
OPS514]. Such similarity allows the migration of programs developed using the power-
ful environments provided by LISP machines and tools such as ART to conventional
hardware. This approach allows problems to be prototyped using the most productive
environment available and then delivered in the desired environment.

Training

CLIPS addresses several issues key to the use of an expert system tool for train-
ing. A good training tool should have knowledge paradigms of the appropriate com-
plexity, be low cost, run on easily accessible hardware, and have easy to use interfaces
and debugging tools.

A good training tool should meet the Goldilocks criteria. That is, its knowledge
paradigms should be neither too complex nor too simple. Hybrid tools incorporating
multiple paradigms such as ART can be extremely difficult to learn to use. In addition,
training using hybrid tools can often require additional training on the use of the LISP
language and environment. On the other hand, simple tools such as decision tree
builders, often lack the necessary depth to teach a reasonable variety of expert system
concepts. CLIPS's single paradigm, forward chaining rules, provides a reasonable
compromise between complexity and simplicity. It also provides a training path to the
more complex hybrid tools.
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A low cost tool is necessary for the widespread use of expert systems technology.
Groups interested in expert system technology may not be able to spend large sums of
money to use tools which utilize some of the more powerful knowledge representation
paradigms. Inexpensive tools that provide only limited paradigms may give a false im-
pression of the types of problems that can be solved with expert system technology.
CLIPS provides a reasonably powerful representation paradigm at an extremely low
cost.

A tool for training should run on easily accessible computers. In other words,
whatever computers are available. This means that the tool should be as portable as
possible and run on microcomputers (which make very good target machines for train-
ing tools). Portability for the training tool is also essential because the development and
delivery environments may differ from the training environment. It is not productive to
train with a tool that cannot then be used to develop and deliver an expert system.

A training tool should be easy to use. Mouse/menu driven windowed interfaces
with graphical knowledge browsers and integrated editors are highly desirable. Be-
cause of portability concerns, the standard version of CLIPS uses a command line in-
terface. However, software hooks are available to allow more sophisticated interfaces
to be built. Several such training and development interfaces have been developed.
Version 4.1 of CLIPS has an integrated editor (designed to run on UNIX, VMS, and
MS-DOS machines) which allows quick editing and recompilation of rules. CLIPS has
a wide variety of debugging commands to assist in examining and debugging an expert
system.

Development

Several features are key to the use of an expert system tool for development.
Among these features are: multiple knowledge representation paradigms; sophisticated
user interfaces, debugging aids, and browsers; integrated editors, compilers, and other
system tools; and the ability to rapidly prototype and iteratively refine an expert system.

Access to multiple representation paradigms is quite useful during the develop-
ment stage of an expert system since the representation paradigms needed to solve a
problem are not always known in advance and can frequently change as the problem
solution evolves. CLIPS utilizes only one major paradigm: forward chaining rules. The
use of a single paradigm in a tool is a drawback for development, however, expert sys-
tems such as DEC's XCON[6] built using OPS5 demonstrate that single paradigm tools
can be used to develop significant expert systems.

Most of the interface features described for training are also desirable for devel-
opment. Sophisticated interfaces provide ease of use in creating, debugging, and ex-
amining an expert system. An integrated environment provides quick turn-around time
during development which facilitates rapid prototyping and iterative refinement.

Clearly the development environment is the area in which CLIPS compares least
favorably to other expert system tools. However, while CLIPS does not provide a de-
velopment environment as powerful as the major state-of-the-art expert system tools, it
does provide the basic features necessary for the development of expert systems.
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Conclusion

CLIPS has several characteristics which make it highly advantageous to use as a
tool for delivery and training. Among these are its portability, low-cost, and ease of inte-
gration with conventional environments. In addition, it provides an environment suitable
for the development of expert systems.
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Appendix

NASA, DoD, and other government agencies may obtain CLIPS by contacting the
CLIPS help desk 9:00 AM to 4:00 PM CST weekdays at (713) 280-2233. CLIPS is
available outside the government through the COmputer Software Management and
Information Center (COSMIC), the distribution point for NASA software. The program
number is MSC-21208. Program price is $200.00 and documentation price is $17.00
(as of January 14, 1987). The program price is for the source code. Further information
can be obtained from COSMIC:

COSMIC
Software Information Services

The University of Georgia
Computer Services Annex
Athens, Georgia 30602
(404) 542-3265
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ABSTRACT

This paper presents the research issues in using telerobotics in space.

Included in this paper is a review of previous research in space telerobo-
tics and the results of several telerobotics experiments.

INTRODUCTION

A number of studies have been conducted beginning in the 1970's con-

cerning the issues associated with telerobotic systems. Some of the
research issues in telerobotic systems for space application are: video

viewing, scene lighting, feedback delays, and predictive displays.

Video Viewin 9

Three camera locations are commonly considered in most research stu-

dies. The first camera is mounted on the manipulator and gives a close up

view directly over the robotic gripper. A second camera provides an

overall view or scene of the task area. This camera provides depth percep-

tion to the operator. A third camera may also be necessary to provide an

overhead view of the task area.

Several previous camera studies [Pennington 1983] have concluded that

operators prefer two views. One view is positioning the camera for a side
view, or orthogonal to the task board, and above the center of the board

with a 60 degree field of view. The second view is positioning the camera

above the task area and viewing down at a 70 degree angle.

A related issue in video viewing is the use of black and white versus

color cameras. Most researchers have used a black and white camera on the

manipulator and a color scene camera [Collins 1986]. The research has
concluded that black and white cameras are adequate [Yorchak 1986].

Several studies have also been conducted concerning the use of stereo

cameras. A dexterity test consisting of the peg-in-hole task with various

size pegs concluded that the smaller pegs required more time than the

larger pegs [Brye 1977]. Also, the response time was considerably less for

a stereo camera system as compared to an orthogonal monoptic system.

In summary, an evaluation of a number of recent video viewing studies

[Yorchak 1986] concluded that two cameras are better than one, two cameras

positioned orthogonally are better than two cameras positioned to produce

stereo, and a third camera for an overhead view does not seem necessary.
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Scene Lighting

Since all space telerobotic tasks are performed in space, scene

lighting is a critical factor. For example, a task can go from total
darkness to total brightness by a mere change in orientation. Likewise, it

is possible to obtain a variety of shadow conditions based on the location

and position of the robot and the task in space. Scene lighting is rela-

tively easy to simulate in a laboratory. For example, in the laboratory

flat black drapes can completely surround the facility. Also, black cloths

can be placed on the floor and around the task boards to eliminate any
reflections. The overhead lights are then extinguished. The source

lighting can then be directed at various intensities and focused on the

task. In addition, a variety of shadows can be displayed on the task by

positioning the light sources accordingly.

Feedback Delays

Time delays are inherent in any teleoperation system. Sending and

receiving transmissions from space or space vehicles can result in time
delays between 0.5 and 8.0 seconds. The length of delay depends on the

number of switching satellites and the data processing times. A number of
studies have been made of the effect of time delays on operator performan-

ces. In general, these studies have concluded that the task time increases
with an increase in time delays [Ferrell 1965].

A related issue to time delays is the effect of limited camera band-

widths on operator performance. Bandwidths are generally limited because of
the vast amount of data transmission necessary between the manipulator and

the control station. Several studies [Ranadive 1979 and Deghuee 1980] have

concluded that the operator can perform familiar simple tasks with con-

siderably reduced bandwidths; however, these studies were done without any

time delays.

Predictive Displays

Time delays cannot be completely eliminated in any teleoperation

system. However, with predictive displays the operator is able to see, via

a computer graphics representation of the robotic area, exactly where the
robot will be after the commands are executed. As the operator moves the

arm, the model will, in real time, update the graphics display to show the

operator the effects of the command before the arm has actually received
the command. This type of predictive feedback is useful to the operator by

improving the low productivity of move and wait tactics. For example, a

recent study [Sheridan 1984] found that predictive displays reduce task
time between 50-150 percent. Also, in another study [Arnold 1963] predic-

tive displays enabled the operator of a remote vehicle to drive at the same

speed nearly as well with or without a time delay.

ROBOTICS LABORATORY

Figure 1 presents a system schematic of the space telerobotics

laboratory at the University. The laboratory is configured around a Puma
562 6 DOF arm. Mounted on the arm is a high resolution black and white CCD

camera (see Figure 2). The Puma is remotely controlled with two 3 DOF hand
controllers at the control console.
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Several scene cameras are located around the task board. One of the
cameras is a color camera with auto white balance and a zoom lens that is
mounted on a pan and tilt unit. Both the zoom lens and the pan and tilt
unit are remotely controlled at the control console. The second scene
camera is a black and white camera. All video output is fed back to moni-
tors at the remote control console.

The inter-meshing gripper is a modification of a NASAdesign [NASA
1980]. The gripper is electrically operated and has two limit switches to
indicate whenthe gripper is fully open or closed. The gripper is remotely
controlled at the control console.
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Figure I. System schematic of robotics laboratory

TELEROBOTIC EXPERIMENTS

A simple peg-in-the-hole task was defined to evaluate the labora-

tory's hardware and software, especially the Puma control software. In

addition, by selecting the peg-in-the-hole task, it was possible to compare

and validate the results with previously published research. Figure 2 also

includes a photograph of the peg-in-the-hole task board. Each board con-
sists of three 1 1/8 inch holes. The peg diameter is one inch. Initially,
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t h e  peg i s  i n  t h e  t o p  h o l e  on t h e  r i g h t  board. The task  o b j e c t i v e  i s  t o  
t r a n s f e r  t h e  peg t o  t h e  bottom h o l e  on t h e  l e f t  board. The response 
v a r i a b l e  i s  t h e  t i m e  t o  per form t h e  task .  T h i s  response v a r i a b l e  i s  common 
t o  most t e l e r o b o t i c  exper iments.  The scene l i g h t i n g  equipment d i d  n o t  
a r r i v e  i n  t ime  f o r  t h e  experiments. Therefore,  a l l  exper iments were con- 
ducted w i t h  t h e  normal l a b o r a t o r y  l i g h t s  tu rned  on. 

The f o l l o w i n g  f a c t o r s  and l e v e l s  w i t h i n  f a c t o r s  were considered i n  t h i s  
exper iment:  

O F a c t o r  1 - Time delay. 
Three l e v e l s  of t i m e  delays were used (0, 1, and 2 
seconds). These delays were changed through t h e  r o b o t  
c o n t r o l  program. 

O F a c t o r  2 - Camera view. 
Three l e v e l s  o f  camera views were used w i t h  each l e v e l  
c o n s i s t i n g  o f  two cameras: a s i d e  scene view and and 
an arm view where t h e  camera was mounted on t h e  Puma 
arm; an angle scene view w i t h  p a n / t i l t / z o o m  and an arm 
view; and an angle scene view w i t h  no p a n / t i l t / z o o m  and 
an arm view. 

O F a c t o r  3 - View c o l o r .  
Two l e v e l s  were used: b lack  and w h i t e  and c o l o r .  
t h e  s i d e  view camera w i t h  t h e  p a n / t i l t / z o o m  was co 
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Each level of each factor is combined with all levels of every other

factor in the experimental design. Therefore, the experimental design con-

sists of a 3x3x2 completely randomized factorial experiment. This design
results in 18 cell. Each cell is also replicated four times, two each by

two student subjects, for a total of 72 runs.

The ANOVA results show a significant effect of time delay on task time

(F = 33.18, p<O.05). A number of other research studies have been made on

the effect of time delays on operator performance. In general, these stu-
dies have concluded that the task time increases with an increase in time

delays [Ferrell 1965 and Yorchak 1986].

The ANOVA results did not show a significant effect of camera view on
task time (F = 1.80). While the camera view did not show a significance,

the subjects stated preference for the side, or orthogonal, view as opposed

to the angle view. This preference agrees with findings by Kirkpatrick

[Kirkpatrick 1973] that orthogonal views are more effective.

The ANOVA results did not show a significant effect of view color on

task time (F = 2.31). This result agrees with other researchers who have
concluded that black and white cameras are adequate [Yorchak 1986]. The

ANOVA results also did not show any second or third order interaction

effects. These four interactions were delay and view; delay and color;

view and color; and delay, view and color.

Figure 3 is a plot of the total task time for the O, 1, and 2 second

time delays. The task times were averaged for each time delay and repre-
sent 24 values. As can be seen, the total task time increased from 2.99

seconds with 0 second delay to 4.64 seconds with a two second delay.
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Figure 3 . Total task time with feedback delays
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CONCLUSIONS

Future enhancements to the laboratory include: placing the

pan/tilt/zoom under voice control_ predictive displays and artificial

intelligence as an operator assistant. Additional experimentation will
include increased sample size, increased task difficulty, and improved task

boards and lighting. This experimentation will produce data to answer

questions proposed by previously research and will provide information on
telerobotics for space applications.

ACKNOWLEDGMENTS

This research is being supported in part by an equipment grant from the

Boeing Aerospace Company and grants from the Alabama Research Institute.

REFERENCES

i. Arnold, J. E. and P. W. Braisted, Design and Evaluation of a Predictor

for Remote Control Systems Operating with Signal Transmission Delays,

NASA Tech Note D-2229, December 1963.

.

.

no

Brye, R. G., P. N. Frederick, M. Kirkpatrick, Ill, and N. L. Shields,

Jr., Earth Orbital Teleoperator Manipulator System Evaluation Program,

Report H-77-2, Essex Corp., Huntsville, AL 35803.

Collins, S. L. and R. B. Purves, "Remote Servicing of Space Systems,"

Proceedings of the Conference of Artificial Intelligence for Space

Applications, NASA, Huntsville, AL--_Nov. 1986.

Deghuee, B. J., Operated-Adjustable Frame Rate, Resolution, and

Grey-Scale Tradeoff in Fixed Bandwidth Remote Manipulator Control,
Man-Machine Systems Laboratory, Report MIT, September 1980.

5. Ferrel, W. R., "Delayed Force Feedback," Human Factors, Oct. 1986.

. Kirkpatrick, M., T. B. Malone, and N. L. Shields, Jr., Earth Orbital

Teleoperator Visual Systems Evaluation Program, Essex Corp.,

Alexandria, VA, March 1973.

7. NASA, Mechanical Hand for Gripping Objects, NASA Tech Brief MFS-23692,
Summer 1980.

8. Pennington, J. E., A Rate-Controlled Teleoperator Task with Simulated

Transport Delays, NAS-A Technical Memo 85653, Sept. 1983.

9. Pepper, R. L. and J. D. Hightower, "Research Issues in Teleoperator

Systems," Proceedings of the Human Factors Society, 1984.

10. Ranadive, V., Video Resolution, Frame Rate, and Grey-Scale Tradeoffs

Under Limited Bandwidth for Undersea Teleoperation, Report

TR-NR196-152, MIT, 1979.

11. Sheridan, T. B., Review of Teleoperator Research, Man-Machine Systems

Laboratory, MIT, 1984.

12. Yorchak, J. P., Teleoperator Human Factors Stud_, MCR 86-558, Martin
Marietta, Denver, CO, May 1986. 64



N88- 16370

TELEROBOTIC CONTROLLER DEVELOPMENT

W. S. Otaguro, L. O. Kesler

McDonnell Douglas Astronautics Company

Huntington Beach, California 92647

Ken Land, Don Rhoades

NASA - Johnson Space Center

Houston, Texas 77058

ABSTRACT

Telerobotic experiments can be performed with existing

technology on the orbiter to demonstrate the feasibility to

perform supervised robotic material handling and positioning
functions in space. To meet NASA's Space Station's needs and

growth, MDAC has developed a modular and generic approach to
robotic control which provides near term implementation with low

development cost and capability for growth to more autonomous

systems. This effort uses the MDAC developed, vision based,
robotic controller and compliant hand integrated with the RMS arm

on orbiter. A description of the hardware and its system

integration will be presented.

A ground demonstration of this system will be performed at

the Manipulator Development Facility at NASA-JSC using a full
size, I G version of the orbiter RMS arm. Details of this

program will be presented.

INTRODUCTION

The objective of the MDAC/NASA Robotic Tracker demonstration

using the Manipulator Development Facility (MDF) arm at the

Johnson Space Center is to functionally demonstrate the

technology readiness of telerobotics (supervised autonomy) to

perform approach, positioning, engagement, and assembly under man

supervised but autonomous robotic operations. The MDF arm was
chosen for this demonstration because it represents the

implementation of teleoperation in space and can be readily used
to demonstrate telerobotics as well. The MDF arm is a I G

version of the shuttle RMS arm. Currently, the MDF arm is

teleoperated with direct man or computer preprogrammed control

and guidance.

TELEROBOTIC ARM DEMONSTRATIONS

This demonstration will use the existing MDF capability with

a robotic tracker developed by McDonnell Douglas. This tracker

will be used to process video camera inputs to determine target

position, bearing, and attitude and to guide the MDF arm under

operator supervision. The basic hardware elements and interface

are shown in Figure I. The robotic tracker will interface to the
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MDF system through an RS232 link to the SEL 32/77 computer. The
robotic tracker will be considered as a remote terminal and will
input and display the following:

I •

2.

Input pitch, yaw, and roll and X, Y, Z data for
operator command mode for MDF arm positioning.

Display data as the arm moves.

The tracker will also have the capability to perform command

check and obtain response from the SEL 32/77 computer.

The crew station will initiate and stop operational commands

as usual. The R12 panel will remain fully operational by being

able to input pitch, yaw, roll and X, Y, Z data and perform
command check•

This functional demonstration will perform manual target

lock-on with autonomous target tracking, MDF arm guidance,

approach, and positioning. The target range will be within 20

feet at acquisition. The target will be a standard grapple
fixture target and will initially be stationary• The initial
demonstration with a fixed lens camera will allow autonomous

approach to about 3 feet.

TEST PROCEDURE

The MDF arm operator will position the camera to have the

grapple fixture target in its field of view. The tracker

operator will then place the acquisition gate about the target
for lock-on by the tracker. After lock-on, the tracker will

calculate the target position and input to the SEL 32/77 the new

position (X, Y, Z) and attitude (pitch,, roll, yaw) to which the
end of the MDF arm is to be moved• Initially, the tracker will

estimate a straight line motion of the end of the MDF arm to the

target with discrete movement increments of several feet. As

confidence in the overall system operation is gained, larger
increments will be allowed. For any movement to be executed by

the MDF arm, the MDF operator must activate an execute control

button on the R12 panel. After each arm movement, the tracker
will calculate a new position and send it to the SEL 32/77 for

execution until the camera is approximately three feet from the

target.

DEMONSTRATION OPTIONS

After these static tests are completed, a series of moving

target tests may be performed where the target will be moved to a

new position after each arm movement. Also close in positioning
( I ft) with respect to the target will be performed as allowed

by the availability of camera lenses and targets. Target

engagement by telerobotic control is also being investigated

using a compliant hand, which will incorporate vision based
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tracker guidance for approach to the target with force and
position from the elements (fingers) of the hand for final target
engagement.

MDAC TRACKING SENSOR

The architecture of the multimode sensor tracker is shown in

Figure 2. The multiprocessor tracker is composed of three

functional parts:

I) A Fairchild CCD 3000 camera and video processor

2) The MDAC 673 image and tracker processor
3) The Z8000 executive control processor

The video tracking functions are computation intensive

requiring a high throughput special purpose signal processor. To
match the video data with the bandwidth of the image processor,

data compression is performed by the video preprocessor by either

excluding regions of the scene that are of no interest or by

performing a pixel averaging. This effectively performs video

windowing and an electronic zoom. The preprocessor also performs

a tracker controlled brightness and contrast adjustment to the

video image. This enhances the tracker's capability to see and

track the target.

The MDAC 673 is a high speed, 10 MOPS, special purpose

microcodable signal processor. All tracking functions are

performed in the MDAC 673. Existing algorithms are: (I)

correlation, (2) centroid, (3) conformal gate, and (4) guard

gate. The primary trackers required for these demonstration were
the correlation and centroid trackers. The correlation tracker

is a feature tracker that tracks by finding the best match of a

video reference image with the scene. The centroid tracker is a
contrast tracker that finds the center of the target exhibiting

intensities above or below a controllable threshold. The

conformal gate and guard gate trackers were required for

countermeasure techniques or when the target background exhibited

a lot of clutter. The conformal gate tracker is a statistical

tracker that classified the scene as either background, target,

or unknown. This tracker finds the target boundary and maintains

the tracker gate size to enclose all of the target. The guard

gate tracker detects when the target passes behind obstacles and
controls the other tracker's operations while the target is not

visible.

The Z8000 executive control processor directs the operation

of the multimode trackers, provides operator interface, and

controls the responses of the MDF arm. The executive processor

controls acquisition of the target, monitors each tracker's

aimpoint, and can reinitialize any tracker algorithm during the

engagement. The operator interface is provided through the hand
controller and the video monitor mounted on the tracking sensor.
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The tracker configuration used in these demonstrations was
developed in 1981. Upgrades to increase its computing
capability, reduce its size, and lower its power consumption are
being implemented. CMOSdevices will be used allowing
theprocessor speed to be increased from 5 to 10 MIPS for the
array processor and from 300 KIPS to I MIPS for the executive
processor. A floating point capability will be added. The pixel
rate will be increased from 5 to 15 MHz. Several boards (video
preprocessor and interface) will be reduced to a single 300 X 300
mil chip. Overall the power consumption of the packaged tracker
will be reduced from 200 to 25 W and the number of cards from 11
to 5. It is anticipated that a version of this packaged tracker
could be used in the Orbiter cabin.

COMPLIANT HAND

The MDAC-Compliant hand will consist of a drive unit, a
pullmember, a strain sensor and segmented elements (Figure 3).
The drive unit will be a brushless d.c. motor and a harmonic

drive. The pullmember will be a metal cable within a cable
guide. The sensor will be mounted between the motor and the end

of the segmented elements to sense the pulling force of the

pullmember.

The segmented element will be constructed of a number of

individual links and compression springs. The pullmember will

run from the pulley through the springs and through all links to
the end of the element.

The brushless d.c. motor will rotate a pulley on its shaft to

wind up the pullmember. The sensor will initially sense the

resisting force created by the compression springs within the

links and will feel a rapidly increasing force after contact with

the target.

The MDAC segmented elements, however, have a number of

individual links, which are separated by springs to average

forces between links. It is this principle that gives our

intelligent, sensor-controlled segmented elements the superior
capability to accept an objects random curvature where each

element develops its own shape. The number of links is not

limited and all link dimensions are adjustable to create the best

suited combination. The MDAC-Compliant hand (Figure 4) has four

segmented elements and a palm camera for object identification
and alignment control.

CONCLUSION

The capability of existing, packaged tracker and compliant

hand hardware to perform telerobotic control functions with minor

upgrades are functionally being demonstrated. Upgrades in
hardware and software will be required to address the
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requirements of space operations. However, a great deal of the
basic development have already been and are being performed and
funded by other government agencies. This demonstration, with
the I G RMSarm, will provide additional information on the
integration of this technology with existing systems for near
term robotic space operations.
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Software Simulation

of Time Delay in Teleoperation

K. Wayne Goode
Kenneth E. Johnson Research Center

University of Alabama in Huntsville

Huntsville, Alabama 35899

ABSTRACT

This paper describes research done in the Space Robotics Laboratory at

UAH studying the effects of time delay on teleoperation.

INTRODUCTION

The long range goal for the NASA space station is to establish a per-

manent presence of man and machines in space. Because of cost and safety

factors, teleoperation will be important to the fulfillment of this goal.

Teleoperation means remote operation. That is, the robot receives

instructions from a human operator and then performs the task. The task to

be performed is at a remote distance from the operator.

In space applications there is often a delay between the time the

human operator gives a command and time the command is executed in space.
There is a further delay before pictures from cameras located at the remote

site are relayed to the operator. As the time delay increases, so does the

time required to complete the task, thus making the operation of the remote
device more difficult.

The Johnson Research Center at the University of Alabama in Huntsville

has established a space robotics laboratory to study time delay and other
issues of teleoperation.

This paper will describe this lab and deal specifically with the soft-
ware written to control the robot and simulate time delays.

HARDWARE

Figure I presents a system schematic of the space robotics laboratory.

The laboratory is configured around a Puma 562 robot with 6 degrees of

freedom (see Figure 2) which is on loan from Boeing Aerospace Company in
Huntsville.

A custom designed joystick controller with two joysticks, each with

three degrees of freedom, is used to control the robot. These joysticks

are connected to the robot controller through an analog to digital inter-
face.

I_ECEDING PAGE BLANK NOT FIL_'."D
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SOFTWARE

The software to control the robot is written in VAL II, the control
language for Puma robots.

Joystick Calibration

The joystick outputs a voltage in the range of 0 to 10 volts for each
axis. The minimum, maximum, and center are different for each axis. The
calibration program asks the operator to move each of the joysticks to its
extreme positions. The program reads the minimum, maximum, and center
voltages for each axis and stores the information for reference when
reading the joystick.

The interface is subject to electrical noise. The voltages will vary
by as much as 5%. However, since the joystick does not need to be very
precise, this is an acceptable error. To reduce the error, the joystick is
read several times and the values averaged.

Readin 9 the Joystick

The subroutine JOYSTICK reads the joystick controller using the analog

to digital interface. The reading are normalized in the range -1 to 1

based on the calibration information recorded by the calibration program.

This number is squared to give more precise control around the center

point.

Any reading less than .05 is considered to be 0. This dead zone
around the center keeps the robot from drifting slightly due to small

errors in the joystick reading caused by electrical noise.

Time Delays

The program DELAY (see listing 1) is the move program with a time

delay added. The program prompts the user for the length of the time delay

at the start of execution of the program.

When using a time delay, the program must read the joystick, store the
information, recall other information and move the robot accordingly. The

time required to execute each loop must be the same to keep the time delay

accurate. The program executes this loop seven times a second. The steps
it takes are:

1. Read the joystick.

2. Calculate the new position based on the readings.

3. If the position is out of range use the last valid position.

4. Store position on the top of stack.

5. Pull next position off the bottom of stack.

. If the robot will complete the current motion by the end of the

time allowed for the execution of the loop (1/7 of second), com-
mand the robot to move to the position just pulled off the stack.

74



7. Wait until the time allowed for execution of this loop has
elapsed.

The robot can buffer one movementat time. That is, once a commandis
given to start a motion the program proceeds without waiting for the
motion's completion. However, if another motion commandis given before
the first motion is finished, the program will wait for the first motion to
finish and start the second motion before continuing with the program.

This can be a problem when the joystick must be continuously read.
The solution is to skip the movementto the new location when the current
movementwill not be completed in the amount of time allowed. The robot
will catch up during the next motion command.

The amount of time for each loop must be held constant so that the
delay will be correct. An entry is read off the stack and a new one put on
each time a loop is executed. This way, the time delay can be changed by
varying the size of the stack. The stack should have seven entries for
each second of delay because each step is 1/7 of a step long.

The computer's clock is incremented 35 times a second and the loop
time must be a multiple of that time. 1/7 of a second was selected because
it was the shortest time in which the steps necessary to each loop could be
executed.
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VAL II ROBOT CONTROL LANGUAGE

The function of many of the command of the VAL II language are

obvious. Some of the non-obvious commands and functions in the programs
listings in Appendix B are explained below.

ADC

BREAK

DECOMPOSE

This function returns a value in the range -1023 to 1024 that

represents a voltage in the range -10 to +10 for the analog to
digital interface channel indicated.

This command suspends program operation until the current robot
motion has finished. Normally, the program starts a robot

motion and continues with the program execution.

This function returns the six components of a robot location.

The components are x, y, z, orientation, altitude and rotation.

HERE This command assigns the current location to the specified loca-
tion variable.

INRANGE

MOVE

This function returns a value indicating whether the specified

location is in the robot's work envelope.

This command moves the robot to the specified location.

RIGHTY

TIMER(-1)

This commands sets the robot in a right handed configuration.

This function returns the amount of time left before the current
robot motion is finished.

TRANS This function returns a location variable described by the six

components given. This is the opposite of the function
DECOMPOSE.

SET This command is used to assign a value to a location variable.

Listing I

DELAY PROGRAM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

;Delay

;KW Goode 8JUL87

TYPE /C25, /U22, "Time delayed robot controlled program"
TYPE

CALL joystick
IF er THEN

TYPE

TYPE "The joystick power is turned off."
RETURN

END

scale l = 20
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

scale a = 5
st = 0

count = 0

rate = 5

tics = INT(tps + 0.5)

RIGHTY

MOVE TRANS (-800,0,-90,0,-90)

TYPE "Moving the robot to the starting position"
BREAK

HERE rpos

TYPE /U20,"

TYPE /U20, /S

PROMPT "Enter time delay in seconds ==>", delay
TYPE

steps = delay * rate

IF steps < 1 THEN

steps = 1
END

DECOMPOSE p[] = rpos

FOR i = 0 to steps

SET stack [i] = rpos
END
TIMER 1 = 0

10 SET dpos = stack [st]

IF TIMER (-1) <tics/rate/TPS THEN

MOVE dpos
END

CALL joystick

p[O] = p[O] + xl*scalel

p[1] = p[1] + yl*scalel

p[2] = p[2] + zl*scalel

p[3] = p[3] + x2*scalea

p[4] = p[4] + y2*scalea
p[5] = p[5] + z2*scalea

SET rpos 1 = TRANS(p[O], pill, p[2], p[3], p[4], p[5])

IF INRANGE (rposl) == 0 THEN

SET rpos = rpos 1
END

DECOMPOSE p[] = rpos

SET stack [st] = rpos
st = st + 1

IF st == steps THEN
st = 0

END

count = count + 1

WAIT TIMER (1) >= (count*tics/rate -O.5)/TPS
GOTO 10
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MTK: An AI Tool For Model-Based Reasoning

William K. Erickson and Mary R. Schwartz

Systems Autonomy Demonstration Project Office
NASA Ames Research Center

Moffett Field, CA 94035

Abstract

A 1988 goal for the Systems Autonomy Demonstration Project Office of the

NASA Ames Research Center is to apply model-based representation and

reasoning techniques in a knowledge-based system that will provide

monitoring, fault diagnosis, control and trend analysis of the Space Station

Thermal Management System (TMS). A number of issues raised during

the development of the first prototype system inspired the design and

construction of a model-based reasoning tool call MTK, which was used in
the building of the second prototype. This paper outlines these issues, with

examples from the thermal system to highlight the motivating factors
behind them, followed by an overview of the capabilities of MTK, which was

developed to address these issues in a generic fashion.
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Integration of Symbolic and Algorithmic Hardware and Software

for the Automation of Space Station Subsystems

Hugh Gregg, Lawrence Livermore National Laboratory

P.O. Box 808, L-310, Livermore, CA 94550

Kathleen Healey, Johnson Space Center

Houston, TX

Edmund Hack, Lockheed EMSC

Houston, TX

Carla Wong, Systems Autonomy Demonstration Project Office
NASA Ames Research Center

M/S 244-18, Moffett Field, CA 94035

Abstract

Traditional expert systems, such as diagnostic and training

systems, interact with users only through a keyboard and screen,

and are usually symbolic in nature. Expert systems that require

access to data bases, complex simulations and real-time

instrumentation have both symbolic as well as algorithmic

computing needs. These needs could both be met using a general

purpose workstation running both symbolic and algorithmic code,

or separate, specialized computers networked together. The

latter approach was chosen to implement TEXSYS, the thermal

expert system, developed by NASA Ames Research Center in

conjunction with Johnson Space Center to demonstrate the ability

of an expert system to autonomously control the thermal control

system of the space station. TEXSYS has been implemented on

Symbolics workstation, and will be linked to a microVAX computer

that will control a thermal test bed. This paper will explore

the integration options, and present several possible solutions.
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Requirements and Options for Communications Services

in support of the

Systems Autonomy Demonstration Project

Richard M. Brown and Robert Yee

Systems Autonomy Demonstration Project Office
NASA Ames Research Center

Moffett Field, CA

Abstract

Work will begin this year on the development of the second of four

demonstrations of automation technology under the Systems Autonomy

Demonstration Project. This demonstration will involve elements of four

NASA Centers: ARC, JSC, LeRC and MSFC. Unlike the first

demonstration, intercenter digital data communications will be a vital
element of this demo.

This paper presents a study of the requirements and options for

interconnecting the development systems and demonstration testbeds at

NASA centers supporting the Systems Autonomy Demonstration Project.

The communications requirements of the SADP development and

demonstration environments are described, potential communications

protocols are examined and compared, the options for network topologies

are examined, and the expected communications error rates and system
availability are described.
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KBS V&V as Related to Automation of

Space Station Subsystems:

Rationale for a KBS Lifecycle

K. Richardson and C. Wong

Systems Autonomy Demonstration Project Office
NASA/Ames Research Center

Moffett Field, CA

Abstract

The role of V&V in software has been to support and strengthen

the software lifecycle and to ensure that the resultant code

meets the standards of the requirements document. KBS V&V should

serve the same role, but the KBS lifecycle is ill-defined. This

paper explains the rationale of the simple form of KBS lifecycle

- a development process with certain critical differences from

the traditional lifecycle.

Among differences is the requirements specification, which is in

some respects more flexible than in traditional software

development, but which nonetheless assumes a more significant

portion of the KBS development effort.

Special KBS development requirements are accommodated where

possible by modifications to the traditional software lifecycle.

Research areas are suggested for those aspects which present new
or unusual difficulties for V&V.
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"Monitoring of Space Station Life Support Systems with

Miniature Mass Spectrometry and Artificial Intelligence"

Richard A. Yost and Jodie V. Johnson

Department of Chemistry

University of Florida

Gainesville, FL 32611

and

Carla M. Wong

Systems Autonomy Demonstration Project Office

M/S 244-18

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

The combination of quadrupole ion trap tandem mass spectrometry

with artificial intelligence is a promising approach for monitoring

the performance of the life support systems in the space station.

Such an analytical system can provide the selectivity, sensitivity,

speed, small size, and decision-making intelligence to detect,

identify, and quantitate trace toxic compounds which may accumulate

in the space station habitat.
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HSTDEK: Developing a Methodology for Construction of

Large-Scale, Multi-Use Knowledge Bases

Dr. Michael S. Freeman

NASA/Marshall Space Flight Center

Abstract

Marshall Space Flight Center is the lead center for the Hubble Space Telescope
Design/Engineering Knowledgebase (HSTDEK) Project which is being funded by
NASA's Office Of Aeronautics and Space Technology (OAST) as an element in the Core
Technology Research effort of the Systems Autonomy Technology Program (SATP).
The primary research objectives of HSTDEK are to develop a methodology for
constructing and maintaining large scale knowledge bases which can be used to
support multiple applications. To insure the validity of its results this research is
being pursued in the context of a real-world system, the Hubble Space Telescope. This
paper will describe the HSTDEK objectives in more detail, briefly discuss the history
and motivation behind the project, outline the technical challenges faced by the
project, and present the approach which is being taken to achieve its goals.

Introduction

The capture of design data and, to a lesser extent, design knowledge is already
an integral part of large-scale development programs within NASA. However, it is
primarily a manual and paper-based process. Even where design data is developed or
stored in an electronic medium, there is no common framework or representation
which permits the results of the traditional engineering activities comprising the
development effort to support an integrated application. With regard to design data,
for example, design of the structural components of a system may be done using a
Computer Aided Design tool but the weight and center of gravity of the components
are not directly available to the computer based tools used by the mass properties
analyst to calculate integrated system values. Nor is the expertise of the thermal
expert directly available to the electrical engineer designing some power consuming
(and thus heat generating) component of the system.

At present, design data is shared through the development of an enormous set
of paper documents on any major project, and expertise is shared by means of design
reviews based on these documents. These reviews are very costly, involving dozens of
experts, and typically identify hundreds of discrepancies which must then be
corrected in the design. Most of these discrepancies could be avoided if each expert
had the benefit of the other experts' related expertise throughout their design
instead of only at checkpoints such as Preliminary and Critical Design Reviews. If
that expertise exists only in the heads of our engineers, we will not be able to
effectively share it even within a project, much less between projects. But it is now
possible to capture that design knowledge in a form which will make much of it
constantly available. The capture of such knowledge and the design data to which it
refers in a particular domain, however, will result in a knowledge base whose scale
greatly exceeds that of current knowledge engineering efforts. It also implies an
ability, not currently available, to utilize knowledge about the design of a system to
support multiple engineering activities such as evolutionary design, fault diagnosis,
planning for operations and maintenance, training, etc.

PRECEDING PAGE BLANK NOT FILMED
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The primary objective of the HSTDEK project is to develop a methodology for
constructing knowledge bases on the scale required to support NASA projects and for
making the diverse types of design data and design knowledge found in these
projects available for use by multiple knowledge based systems performing different
functions. That NASA projects in particular are excellent domains for the use of
knowledge based systems technology has been known for some time [1]. This fact is
now being recognized by NASA management as critical to achieving the goals we
have set for the 1990's and beyond, especially in the Space Station.

The Advanced Technology Assessment Committee (ATAC), which Congress
mandated in Public Law 98-371 to identify specific Space Station systems which
advance automation and robotics, has formed a subcommittee to assess the state of the
art in design knowledge capture. Its recently released report concluded with the
following recommendation.

"NASA has an exceptional opportunity for both technology
benefit and technology transfer, which can succeed if NASA:

o Determines a firm course of action, and assigns

responsibility for execution of each step

o Provides the supportive environment needed for
community-oriented development

o Establishes and enforces community guidelines for and
standards for information exchange

o Encourages the effective development of emerging DKC
technology to a stage of readiness, while adopting a
discerning posture towards its use." [2]

An Automation and Robotics program has been established in OAST to achieve the
goals set for NASA by ATAC in these areas. The Systems Autonomy Technology
Program (SATP), of which HSTDEK is an element, is the primary vehicle for pursuing
the ATAC automation goals.

The Systems Autonomy Technology Program

The overall program goal of the SATP is to develop, integrate, and demonstrate
the technology required to enable intelligent autonomous systems for future NASA
missions [3]. It is managed by the Chief of the Information Sciences Division at
NASA/Ames Research Center, with the advice of representatives from each NASA

center who comprise the Systems Autonomy Intercenter Working Group (SAIWG),
and has a planning horizon of about ten years. Within the Core Technology Research
effort of the SATP, the HSTDEK Project is an element of the Knowledge Acquisition
task in the Planning and Reasoning area. The goals of this task are defined as follows.

"The objectives are to develop the ability to preserve the
'corporate memory', i.e., to ensure that all the facts, heuristics, and
other information gained during the design, construction, and testing
of a device are available in a practically usable form during the

operational lifetime of the device." [4]

The HSTDEK project has been established in direct response to these objectives.
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The HSTDEK Project

The HSTDEK Project is managed out of the Space Systems Division in the
Systems Analysis and Integration Laboratory of Marshall Space Flight Center (MSFC).
This Division has Systems Engineering responsibility for the Hubble Space Telescope
(HST) at MSFC, which is the NASA lead center for HST development. The project has
four main tasks, to be accomplished over a five year period, each of which involves
collaborative efforts with other organizations.

o Development of a methodology for construction of large-scale
knowledge bases which can each be used to support multiple
knowledge based applications.

o Assessment of the data products of the traditional engineering
activities which composed the I/ST development process as sources of
design data and design knowledge, as well as insertion points for
knowledge engineering technology.

o Construction of the HST Design/Engineering Knowledgebase itself.

o Construction of two knowledge based systems which validate the
methodology used to construct HSTDEK by performing multiple
functions in support of HST verification and operations.

This approach is based on the principle that research into the use of knowledge
engineering technology will be most effective if it is done in the context of a "real
world" application such as support of the Hubble Space Telescope. Each of these tasks
will be discussed in more detail below, but it is worthwhile at this point to discuss the
characteristics of the HST which led to its use as the domain for this project.

The Hubble Space TelescQpe Domain

It may seem odd, at first, to select a mature project such as HST as a domain in
which to develop methods for design data and design knowledge capture. The fact
that the design activities are essentially complete, however, offers a number of
advantages to this project. On a new program, it might be necessary to wait several
years for access to some design products and activities. Using a mature project, these
inputs are all available immediately and can be analyzed as a whole system of
activities. The refinement of the design products over the development cycle could
also result in a large amount of wasted effort in construction of a knowledge base.
This would not be a consideration if the goal was to use knowledge based systems to
support the development process. The goal here, though, is to develop a methodology
which will be useful in capturing the design data and knowledge rather than a
knowledge based system to assist in the design process. It is therefore preferable to
work from a set of design data and knowledge which is truly representative of that
produced in NASA development projects. In addition to the data products of HST
development, many of the experts involved in its design will still be available to
contribute their expertise to the project through HST launch and checkout. Finally,
NASA is about to initiate a number of major development projects; Space Station,
Advanced X-Ray Astronomical Facility (AXAF), the Orbital Maneuvering Vehicle
(OMV), etc. To select any of these projects, as the domain in which to pursue this
research would mean that the technology developed would not be available for use
during those projects. As described above, technology transfer into the Space Station
project is a major driver for this research and such delays are not acceptable.
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In addition to the benefits offered by the timing of the HST project, there are
technical characteristics of the HST which recommend it as a framework for
researchinto design knowledgecapture. It is a major NASA project, whose design,
construction,and test have taken many years to complete.It is typical of large-scale
NASA developmentprojects in that it involves many technical disciplines, and the
integration of a design developed by a number of different contractors. As the
Project Managementcenter, MSFC has responsibility for meeting cost, schedule,and
technical performancegoals. GoddardSpaceFlight Center is responsiblefor the HST
Science Instruments, the Data Managementsystem, the ground system, and the
ScienceInstitute. The LockheedMissiles and SpaceCompanyis the prime contractor
for the Support Systems Module (SSM), including its design, development,
fabrication, assembly and verification; integration of systems engineering and
analysis for the overall HST; and support to NASA for planning and implementing
ground, flight, and orbital operations support. Perkin-Elmer Corporation is
responsiblefor the Optical Telescope Assembly (OTA). Finally, the European Space
Agency (ESA) is responsible for the HST Solar Arrays. [5] This distribution of HST
expertise across a large number of experts in different organizations and at different
geographical locations, makes it a very difficult and unusual problem from the
knowledge engineering perspective, but also is typical of the NASA design domain. A
methodology which can handle the complexity of the HST domain is likely to be
useful in most NASA projects. Finally, the knowledge base developed in this project
will benefit the HST project itself throughout its fifteen year operational lifetime.
This will be a significant "spin-off" of what is, in itself, valuable research.

Project Planning

The funding of the HSTDEK Project as an element of the Systems Autonomy
Technology Program implies a collaboration between MSFC and ARC. As the NASA
lead center for automation, ARC acts as a consultant to MSFC in planning the
knowledge engineering activities in HSTDEK including the selection of appropriate
development and delivery systems for knowledge based systems, as well as knowledge
engineering training for MSFC participants in the project. The four tasks identified
earlier as comprising the HSTDEK Project also involve collaborations among several
organizations, as discussed below.

The most fundamental task to be performed in the HSTDEK project is the
development of a methodology for construction of large-scale knowledge bases
which can each be used to support multiple knowledge based applications. These are
areas of basic research in knowledge engineering. The scope and complexity of the
design data and design knowledge to be captured in this project far exceeds that of
current knowledge bases. Current knowledge bases also are typically focused on a
single aspect of a system, with little knowledge of other subsystems or technical
disciplines. A necessary component of this task is the establishment of a framework
within which different types of knowledge about the HST can be accommodated. This
will allow knowledge based systems utilizing HSTDEK to reason from a deeper and
more basic understanding of the system. The use of a comprehensive knowledge base
like HSTDEK to support several applications will raise another major research issue;
the design of multi-user knowledge bases. This is an extremely difficult technical
problem [6,7], and will probably have to be addressed as a separate research project.
It should be noted that this goal of developing a methodology for constructing a
knowledge base which can accommodate the variety and quantity of design
knowledge required by NASA projects is not the same as developing a methodology
for capturing all the types of design knowledge typically generated in such projects,
but complements such efforts.
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The research required to accomplish this task will be performed at the
Knowledge Systems Laboratory of Stanford University. The first year's effort will
have three major results; a small prototypeof a multi-use knowledgebase in the HST
domain, a set of knowledge representationsto support the construction of a larger
multi-use knowledge base, and the preliminary specification of a methodology for
constructing large-scale, multi-use knowledge bases. The prototype will cover two
subsystemsof the HST (the Pointing and Control System and the Electrical Power
System), one constructed at Stanford and one constructed at MSFC using the
knowledge representationsdeveloped at Stanford. It will support two applications,
probably fault diagnosis and a schedulingfunction. The knowledge acquisition effort
at Stanfordwill draw primarily on the expertiseavailablein the HST designersat the
LMSC facility in SunnyvaleCalifornia, as well as work at the Lockheed Artificial
Intelligence (AI) Center. Knowledge base construction at MSFC is discussed below.

The second main task in HSTDEK is to assess the data products of the traditional

engineering activities which make up a NASA development project as sources of
design data and expertise, as well as processes which could directly benefit from use
of knowledge based systems technology. This is planned as joint research between
MSFC and the Computer Science Department of the University of Alabama in
Huntsville. The first product of this activity will be a prioritized list of HST data
products as knowledge sources which will assist MSFC knowledge engineers in
attempting to acquire as much design data and expertise as possible from them. This
will be refined and generalized based on experience with other development projects
at MSFC. The other main product of this activity will be a recommended approach for
including knowledge engineering inNASA's traditional engineering activities.

The third main task in HSTDEK is actual construction of a large-scale

knowledge base which can support multiple applications. Initially, traditional
knowledge engineering methods will be utilized. As the Stanford research develops
improved approaches to the problem, they will be incorporated in this effort. Several
organizations will be involved in construction of HSTDEK, in addition to the Stanford
researchers. It is expected that the bulk of the actual knowledge engineering will be
done by MSFC personnel. To enable that effort, a six month knowledge engineer
training program at the Lockheed AI Center is planned for as many as ten MSFC
participants over the five year duration of the HSTDEK Project. This will have the
highly beneficial side effect of creating a significant knowledge engineering
capability at MSFC. The participation of Lockheed personnel as knowledge engineers
as well as domain experts is also being investigated, both through the Lockheed AI
Center and LMSC/Sunnyvale. The Lockheed AI Center has already been pursuing
several projects in the HST domain, and it is highly desirable to find a means of
incorporating these efforts into HSTDEK. Similarly, agreements with GSFC and the
HST Science Institute will be sought to enable their participation in HSTDEK.
Coordination of these efforts will be the responsibility of MSFC.

In order to confirm that knowledge bases constructed using the methodology
developed in this project can actually be used in multiple real-world applications, two
knowledge based systems will be built and demonstrated by MSFC in operational
environments. First, the HST Operational Readiness Expert (HSTORE) system will
utilize an early version of HSTDEK to support checkout of the HST during the Orbital
Verification phase immediately following HST launch. HSTORE is planned to provide a
fault diagnosis capability based on HSTDEK to MSFC engineers in the Huntsville
Operational Support Center. A second knowledge based system called GESST (Ground-
based Expert System for Space Telescope) will be made available for use in the Space
Telescope Operational Control Center at GSFC in 1992 using a more complete version of
HSTDEK. It is intended to fully demonstrate a large-scale, multi-use knowledge base.
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Conclusions

In its third progress report, the ATAC voiced concerns that NASA was not
pursuing the development of automation technology rapidly enough to adequately
support Space Station design, and urged that NASA include a requirement for design
knowledge capture specifically in its detailed design and development phase proposal
requests for Space Station [8]. An earlier staff study by the Office of Technology
Assessment stated similar concerns and concluded that aggressive research should be
initiated without delay into advanced automation and robotics technology [9]. The
HSTDEK Project directly addresses these concerns by establishing collaborations with
members of the AI community, both in industry and academia, to effectively pursue
the research necessary to enable the capture of design data and knowledge in major
NASA projects, demonstrating this technology in the real-world domain of the
Hubble Space Telescope, and developing NASA's in-house ability to utilize such

technology.
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Abstract

This paper describes a knowledge-based system for real-time monitoring of telemetry

data from the Pointing and Control System (PCS) of the NASA IIubble Space Telescope

(HST) that enables retention of design expertise throughout the three decade project

lifespan by a means other than personnel or documentation. The system will monitor

performance, vehicle status, success or failure of various maneuvers_ and in some cases

diagnose problems and recommend corrective actions using a knowledge base built using

nominal mission scenarios and the over 4_500 telemetry monitors from the HST. The

real-time system consists of a data management task, an inferencing task, and an I/O

task that run concurrently in multiple CPUs and communicate via a message passing

scheme. Real-time graphical displays can be selected by the user on the multi-level block

diagram of the HST control system displayed by the I/O task. This paper describes the

application of L'STAR to analysis of monitors from the PCS. A detailed description of the

multiprocessing architecture will be described in another paper in the conference. L'STAR

is undergoing continued development and is being used to monitor test cases produced by

the Bass Telemetry System in the Hardware/Software Integration Facility at Lockheed

Missile and Space Co. in Sunnyvale, California. LMSC is assembling the vehicle under

the direction of NASA/Marshall with a 1989 launch planned.
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Introduction

Lockheed Missiles and Space Company (LMSC) is the prime contractor for the Support

Systems Module (SSM) and Integration Systems Engineering for NASA's Edwin P. Hubble

Space Telescope (HST). The HST is considered one of the greatest scientific experiments

in history of mankind. The field of astronomy will be revolutionized by the opportunity

to see to the edges of the universe (14 billion light years away), seven times further than

we can now observe. Unimpeded by the Earth's atmosphere, scientists will be capable

of seeing objects fifty times fainter than those visible today with a stability equivalent to

focusing a laser beam in Washington, D.C. on a dime in Boston!

The launch of the HST by the Space Shuttle has been delayed due to the Challenger

space shuttle accident. The current launch date is late 1989 and the lifetime of the space-

craft after launch is expected to be a minimum of fifteen years. This gives the total project,

from design to end of mission, a lifetime of over a quarter of a century. Capturing knowl-

edge of engineering experts to ensure continued expertise over the project's lifetime is one

of the goals of the application described in this paper.

A second factor driving this application is the complexity of the ground operations task.

The Space Telescope Operations and Control Center (STOCC) at the NASA/Goddard

Space Flight Center in Greenbelt, Maryland, will monitor the vehicle's health and safety

24 hours a day using three shifts of operators. There are almost 5,000 different telemetry

monitors in 11 different possible formats. Each format has a subset of monitors avail-

able in it, and the rate at which a specific monitor is reported varies from 40 hertz to

0.025 hertz. Execution of on-board stored program commands (SPC) are handled by a 40

hertz processing rate making it impossible for the operator to watch individual command

executions.

Lockheed's Artificial Intelligence Center in Menlo Park, California, has been working

on developing a real-time monitoring tool called L*STAR (Lockheed Satellite Telemetry

Analysis in Reai-Time). This knowledge-based monitoring system is still under develop-

ment with initial rule bases being centered on the Pointing and Control System (PCS), the

Data Management System (DMS), and the Electrical Power System (EPS). This paper

will address the PCS application of the L'STAR system. The PCS application, while far

from completion, has already led to many valuable insights.

Requirements

The real-time requirements of the PCS include the following: command verification,

safemode prevention warnings, configuration validation, performance assessment, and con-

figuration monitoring.

Command verification is the process of checking a new command against the configu-

ration of the spacecraft prior to the sending of that command. This is to ensure that the

command will not endanger the vehicle or interrupt the current mission. Verification would

include checks to prevent commands that would expose a scientific instrument aperture to

a bright object such as the Earth or the Sun, for example.
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Safemodeprevention warnings aremessagesto the operator that indicate a dangerous

condition developing and show the autonomous safety system checks done by the HST

flight computer that will initiate a response if ground action isn't taken. The response

by the flight computer's safemode system can range from shutting down subsystems to

shutting the whole flight computer down and passing control of the vehicle over to the

PSEA (Pointing/Sating Electronics Assembly). Almost all responses by the safemode

system abort the current command list and require recovery by the ground system. The

safemode prevention warnings are intended to warn the ground so that either the safemode

response can be avoided or anticipated.

Configuration validation checks compare the modes of various subsystems and ensure

that they are compatible. Certain states should never occur simultaneously. For example,

the attitude of the vehicle is not available for computations when the vehicle is in Drift

mode (used in deployment and recovery from safemode) or trying to align with the Sun

(Sun Point Control). Computations such as the Momentum Management's Minimum

Energy Law which predicts the momentum profile for the next half orbit using the current

attitude should not be active during either of those two states.

Performance assessment allows the operator to know in real-time how successful the

planned mission is. For example, at each point in the mission, there is an anticipated

inaccuracy in the vehicle attitude. After an attitude update by the Fixed Head Star

Trackers (FHST), the error should be less than ten arcseconds, and after establishing lock

on stars with the Fine Guidance Sensors (FGS), the error should not exceed the radius

of the search used to find the stars. The operator would be warned if reported attitude

errors did not meet the expectations for any given time.

Configuration monitoring simply reports, to the operator, changes in the mode of any

subsystem. This includes unplanned changes such as those resulting from unexpected loss

of lock on the stars being used for guidance of the vehicle.

Organization of System

L'STAR uses rules from its knowledge base to intelligently monitor the HST telemetry

stream. So that the system does not have to examine the entire ruleset, each rule has

certain contexts in which it is valid. The rule will not be examined or triggered if its

context does not match the current context of the inferencing system. For instance, a rule

to check the performance of a vehicle maneuver does not need to be tested during Drift

mode. Rules may be applicable in a single context or multiple contexts. The context of

the inference engine is at all times identical to the mode of the HST. The mode of the HST

is an enumerated attribute with currently ten legal values: Drift, Inertial Hold, Science,

Sun Pointing Control, Loss o/ Lock, Attitude Hold, Maneuver, FGS Acquisition, FHST

Acquisition, Mechanism Motion, and PSEA.

Each flight computer software subsystem (total of 13) is a different class (i.e., schemata

or frame type) with unique attributes. They all have at least two attributes called Status

and Mode. Status is typically either normal or abnormal and Mode has values that are

specific to the subsystem.
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A natural way to organize the rules that will potentially number in the thousands was

to put each subsystem's rules in separate files. In each file the rules are titled with a

number assigned (similar to the Dewey Decimal System) as shown in Table 1. In some

cases the rules may fit two categories, in which case the lower number is used.

l.x - determines subsystem mode

2.x - determines subsystem variable attributes

3.x - context dependent limit checking

4.x - checks for invalid mode switch or illegal

variable attributes

5.x - outputs messages to operator

Table i - Rule Number Convention

A sample rule for testing to ensure that speed of reaction wheel 1 is normal for certain

contexts would look as follows:

RULE

CONTEXT

PRIORITY :

AUTHOR

: "[3.1] Reaction Wheel 1 Check";

: ( Inertial_Hold, FGS_Acq, FHST_Acq, Science,

Mechanism_Motion };

100;

"Simon Kao/Larry Dunhsum";

IF

THEN

([value\monitor\qDVOMEVO] > 12.0) (*radians/sec*)

[status\momentum_management\MOMAN] := abnormal;

send( IO, ALERT, "QDVOMEVO", "Wheel speed i high at

X[time\satellite\HST]");!

An identical rule is needed for each of the other three reaction wheels. This need

for vector notation is common in satellite telemetry systems. Many monitors are posi-

tion vectors in the vehicle frame, or are sets of values for identical hardware (6 gyros, 4

wheels, etc.). Facilities for processing and manipulating vectors is generally not available

in commercial AI tools. This capability is being added to L'STAR and should lead to a

significant decrease in the total number of rules.

Temporal Reasoning

Commercial AI tools have few, if any, capabilities for reasoning about past, present, and

future events. For satellite telemetry monitoring it is a necessity to have such capabilities.

L'STAR has implemented them as built-in functions of the inference engine. Temporal

reasoning in the simplest form is the ability to use trends and statistics in rules via functions
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such as rate-of-change and average value over a time period, for example. This makes it

straightforward to write rules based on the vehicle error decreasing or the commanded

body rate being steady.

The more complex part of temporal reasoning involves the difficulties of handling data

from telemetry with various time tags associated with them. The monitors are reported

at various rates and at various times. For example, if telemetry flags A and B cannot be

true at the same time, the fact that the last reported values are both true should not fire a

rule for illegal configuration. A or B may have just been reported true and the other value

has not been reported since that time, and the system needs to wait for the next sample

of the second monitor and discover if it is reported as still being true. If it is, then the

assumption (which in some cases is not valid) is that if one of the monitors was reported

true, both before and after the time that the other one was reported true, then at some

point in time they must have both been true simultaneously. However, for fast changing

monitors with slow reporting rates, even this logic is faulty.

An example rule is that the Minimum Energy Law should be off when the vehicle

mode is in Sun Point control. The vehicle mode flag changes very slowly, so that the user

is assured that two identical samples ensure a constant mode over that time period. If the

vehicle mode were reported twice as frequently as the Minimum Energy Law flag, then the

Table 2 shows the valid and invalid telemetry patterns.

invalid

valid sequences sequences

t = 1.0 ME sample I on on on off off [ on on off

t = 1.01SP sample [ off off on on on _ off off on

t = 1.06 SP sample [ off on on on off [ off on on

t = 1.1 ME sample I off off off on on I on on on

t = 1.11SP sample [ on on on off off [ on on on

Table 2 - Valid/Invalid Sequences for Temporal Reasoning

A rule prohibiting ((ME on) AND (SP on)) would have prohibited three of the valid

states. The L'STAR Inference Engine has an AND function being added to it to handle

rules of this type properly. This need is common in all telemetry sampled systems. Tools

which process rules based only on change data (e.g., an OPS5 based on the Rete network)

cannot handle these types of Relationships

L'STAR User Interface

The I/O Process, which can run on its own processor, provides sophisticated displays that

help both the console operators and the analysts. The operator is provided with messages

99



that are either information, alerts, or warnings. These messages are stored and recallable

using the mouse.

For the PCS, a set of hierarchical displays of the flight computer software is done in

great detail. The diagram shows the relationships of the various monitors. Each monitor

can be plotted on the screen in real-time by simply mousing the monitor name on the

diagram. The analyst can then track problems backward using the diagram to determine

the initial monitor that indicates abnormal behavior.

Conclusions

The L'STAR system has been proven to be able to handle real data from HST tests

and perform the monitoring in real-time. The multi-processor design allows for multiple

inference processes to be distributed to additional processors if the rule-base becomes

unmanageable in real-time for one processor.

The insights into the problems of satellite telemetry systems with regard to easy vector

notation and temporal reasoning have shown commercial tools severely lacking. L'STAR is

an attempt to fill that niche. Both insights and answers have been gained by having a team

consisting of personnel from the LMSC AI Center, the HST flight software development

group, and the ground system operations group.

This system is currently under development and is being used to monitor test cases

produced by the Bass Telemetry System in the Hardware/Software Integration Facility at

Lockheed Missile and Space Co. in Sunnyvale, California.

Acknowledgements

The authors wish to acknowledge the encouragement and support received from Wally

Whittier, LMSC HST S/W Program Manager in Sunnyvale, California.

100



N88-16379

TALOS: A DISTRIBUTED ARCHITECTURE FOR

MONITORING AND ANOMALY DIAGNOSIS

THE HUBBLE SPACE TELESCOPE

INTELLIGENT

OF

Bryant G. Cruse

Goddard Space Flight Center

Greenbelt, ML 20771

ABSTRACT

Lockheed, the Hubble Space Telescope Mission

Operations Contractor, is currently engaged in a

project to develop a distributed architecture of

communicating expert systems to support vehicle

operations. This architecture, called TALOS for

Telemetry Analysis for Lockheed Operated Spacecraft,

has potentially wide applicability to spacecraft

operations. The architecture mirrors the organization

of the human experts within an operations control

center. Initial development consisted of building a

successful prototype that functions within the

existing HAT ground system environment at Goddard

Space Flight Center. The prototype analyzes telemetry

from a history tape to determine the state of the

vehicle with respect to on-board safemode events. The

prototype is currently being expanded along two

fronts. One consists of expert system modules which

perform deeper-level diagnostics and which operate in

an off-line mode. The second is a high-speed front-

end expert systems which will monitor real-time

telemetry for anomalies and spacecraft status and send

activation and initialization messages to the off-line

modules when an anomaly is detected.

Design and implementation of practical expert

system applications to support a complex spacecraft

like the HST has posed a number of challenges. Choice

of expert systems tools to support the project has

projected a problem. Selection is constrained in the

first place by the requirements of hardware and

software compatiblity with the existing HST ground

system. Further, no off-the-shelf expert system shell

was found to have the necessary performance to support

real-time analysis of the HST's engineering telemetry

stream. These factors have led to the selection of

two separate tools currently in development at the

Lockheed Artificial Intelligence Center. One has the

necessary speed to support real-time analysis and the

other has the flexibility required to diagnose a wide

range of anomalies. The requirements of TALOS have

been a significant driver for the development and

refinement of these two tools. The real-time

monitoring tool will be discussed in another paper at

this conference.
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The TALOS architecture will be described and the

unique aspects of the project will be discussed.
Current status of the project will be reviewed.
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ABSTRACT

Lockheed is currently in the process of developing expert

systems that perform on-line monitoring, statusing and trend

analysis of ma3or Hubble Space Telescope (HST) systems. The

three major systems under development are the Pointing Control

System (PCS) [KLSRD87], the Data Management System (DMS) and

the Electrical Power System (EPS). These expert systems are

part of the TALOS [CW87] system for assisting in HST ground

operations which is being developed at Goddard Space Flight

Center. This paper will treat the EPS expert system (a part

of the TALOS distributed architecture).

This paper will describe the design and the prototype for

this system as demonstrated on 9/23/87 at the LMSC Artificial

Intelligence Center, Menlo Park, California. This prototype

demonstrated the capability to use real time data from a 32k

telemetry stream and perform operational health and safety

status monitoring, detect trends such as battery degradation

and detect anomalies such as solar array failures. This

prototype along with the PCS and DMS prototype expert systems

form the initial TALOS capability.

INTRODUCTION

Lockheed Missiles and Space Company (LMSC) is the prime

contractor for the Support Systems Module (SSM) and Integration

Systems Engineer for the Edwin P Hubble Space Telescope (HST).

Additionally, LMSC is the HST Mission Operations Contractor,

responsible for the ground operations that ensure the health

and safety of the HST.

The HST is a complex, state-of-the-art satellite with

unique ground operations requirements. Accordingly the ability

to reliably monitor telemetry in real-time is highly

desirable. To this end the Telemetry Analysis Logic for

Operating Spacecraft (TALOS) system is being developed.
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The Talos system consists of real-time and off-line deep
analysis knowledge-based modules. This paper will concentrate
on the real-time monitoring and analysis EPS monitoring
system. The basis for this system is L'STAR, a Lockheed
proprietary tool. This shell [SRLK87] consists of a
multiprocessing architecture for performing real-time
monitoring and analysis using knowledge-based problem solving
techniques.

In order to handle asynchronous inputs and perform in
real-time, the system consists of three separate processes
which run concurrently and communicate via a message passing
scheme. The Data Management Process gathers, compresses, and
scales the incoming telemetry data before sending it to the
other tasks. The Inferencing Process consists of a proprietary
high performance inference engine, written in the C programming
language, which can run at a rate of close to i000 rules per
second. It uses compressed telemetry data to perform a
real-time analysis on the state and health of the Space
Telescope. The I/O Process receives telemetry monitors from
the Data Management Process and status/health messages from the
Inference Process, updates its graphical displays in real-time,
and acts as the interface to the console operator. The I/O
Process resides on DEC VAXStation II/GPX high resolution color
graphics workstation. It consists of a hierarchy of displays

which the user may traverse using a mouse. The three tasks run

concurrently and may reside on the same or different

processors. Furthermore, the multitasking architecture has

been designed in such a way that multiple inference processes,

multiple data management processes, and multiple I/O processes

can run concurrently and communicate with each other. It

processes several hundred telemetry monitors per second.

The population of L'STAR with HST EPS knowledge has

produced a very fast and reliable operator assistant to be

described in this paper.

EPS REAL-TIME TELEMETRY MONITOR

The TALOS EPS real-time telemetry monitor will provide

operators with the following real-time telemetry capability:

o

o

o

o

o

o

o

o

o

o

HST Mode/Configuration Monitoring.

Real-time EPS Statusing.

Command Verification.

Multi Orbit Health History Tracking.

Ability to Handle Unexpected Telemetry Loss.

Correlation of Temperature, Power Error Histories.

Real-time warning of approaching intelligent

thresholds.

Real-time comparison of an EPS model generated power

profile with telemetry based EPS status.

Projection of telemetry based EPS status in accordance

with load and time parameters defined by a model

generated power profile.

Suggested load changes to prevent exceeding limits.
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One of the key elements required for this system to be able
to reason about the health and safety of the HST is knowledge
about the present and projected future operational mode of the
HST. Accordingly, this system establishes the following
contexts for the reasoning process:

o

o
o

o

o

o

o

o

o

o

Battery Reconditioning
Off Normal Roll

Stationary HST

Maneuvering HST

Orbit Day

Eclipse

Hardware/Software Sunpoint

Solar Array Repositioning

Seasons Of The Year

Orbital Decay

This system provides the operator with a top level

functional diagram of the end to end power flow of the EPS

starting with the Solar Arrays and ending with the Power

Distribution Units. Lower level displays show more detailed

diagrams of EPS components until all telemetry values are

accounted for. The EPS statusing capability consists of the

following:

o

o

o

o

o

o

o

o

o

o

o

o

o

o

EPS Configuration

SA power output

Status of K relays

Structure Current

Battery voltage/temperature

Battery Recharge Ratio

Diode Bus Current/Voltage

Sun to Orbit Ratio

Power Distribution Unit Current

Battery Shunt CKT Status

Solar Panel Assembly Connect/Disconnect

Distribution Bus On/Off

Heater Status

Voltage VS Temperature Change Current Controller
Activation Curves

The following capabilities will provide an EPS real-time

telemetry monitoring assistant that uses temporal reasoning and

communicates with other expert systems:

o Command verification will allow the automatic

indication of command group execution on a display of the

mission timeline. In addition, the EPS expert system will

receive indication of a command reject from the DMS real-time

monitor and such information as maneuver status from the PCS

monitor.

o Multi-orbit health, history tracking will display and

compare a 15 orbit history set of events such as the following:

Trickle Charge Time

Maximum battery Voltage at Eclipse

Minimum Battery Voltage at Eclipse
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o Management of unexpected telemetry loss is necessary

to support multi-orbit event tracking above. It will be

accomplished by designating a beginning/end of orbit event that

occurs at a predictable time such as K-relay closure. If the

required data has not been collected by the end of orbit then

that orbit will be shown as missing data and the data

collection process will be reinitialized for the beginning of

the next orbit.

o Correlation of temperature, power and error histories

will allow the operator to compare any multi-orbit health

histories for the purpose of identifying failure trends.

o Intelligent threshold warnings consits of monitoring

real-time EPS telemetry to provide operator warnings of

approaching anomalies as a result of reasoning about the

current operational mode on future loads.

o EPS status and power profile comparison compare an EPS

model generated power profile with the actual EPS to show a

projected status based on the load as defined by the EPS

model. The operator may project the power status to a number

of orbits or hours in the future.

o Projection of load and time changes will allow the

system to obtain the results of proposed load and time changes

by extrapolating the telemetry based EPS status into the

future. In addition, the expert system will have access to the

projected electrical activity as defined by the power profile

and will be able to warn the operator of HST components or

science instruments that are scheduled to come on and approach

load limits.

o Suggested load changes will give the operator access

to the projected loads created by HST components in their

operational configurations. When the power profile deviates

from the current EPS status the system will be able to access a

load shedding component list and make recommendations to the

operator.
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CONCLUSIONS

The work accomplished to date provides the operator with an

intelligent assistant that reasons about current system status

such as the following:

o

o

o

o

o

Battery Voltage

Charge Current

Bus Voltages and Current

Component Temperatures

Solar Array Output

It then advises the operator whether the above parameters

are normal in accordance within the following contexts:

o

o

o

o

o

HST maneuvering

HST Stationary

Solar Arrays repositioning

Orbit Day

Eclipse

Thus, this system advises the operator that a given current

is normal, not just within limits, while taking into account

maneuvering status and time of day. Future work will add

safemode, seasons, and orbital decay to this reasoning process.

The above information is presented in meaningfull displays

showing the end to end energy production and usage along with

lower level detailed displays. Warnings and adviseries are

provided. This work is on-going and future work includes

completing the requirements listed in this paper.
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Abstract

This paper will discuss various applications of artificial intelligence to space electrical

power systems. Completed, on-going, and planned knowledge-based system activities will be
overviewed. These applications include NICBES (the expert system interfaced with the Hubble

Space Telescope electrical power system test bed and one of the few NASA expert systems in daily

operational use; the early work with SSES; the three expert systems under development in the
Space Station advanced development effort in the core module power management and distribution

system test bed; planned cooperation of expert systems in the CM/PMAD breadboard at MSFC with

expert systems for Space Station at JSC and LeRC; and the intelligent data reduction expert system
under development.

Background

The size and complexity of spacecraft power systems are increasing dramatically.

America's first space station, Skylab, employed an eight kilowatt power bus. From fifteen to

twenty ground support personnel were required to monitor and control the electrical power sys-

tem on this early space station. At times, extensive crew involvement was necessary to correct
system faults. [3] [4]

The Electrical Power Branch at Marshall Space Flight Center has been involved since 1984

with the development of expert or knowledge-based systems to facilitate the automation of elec-

trical power systems. The expert systems developed thus far are focused on fault diagnosis and
contingency payload scheduling. Systems now under development address comprehensive fault

management, automatic rescheduling, and intelligent data reduction. Future plans involve the de-

velopment of expert systems for battery management, trends analysis, and component failure
forecasting. [5]

Several expert system prototypes have been developed including: the Hubble Space
Telescope electrical power system test bed diagnoser /analyzer named NICBES (Nickel-Cadmium

Battery Expert System), the Space Station Experiment Scheduler (SSES), and the Loads Priority
List Management System (LPLMS). Other current and proposed automation activities will also be
briefly discussed.

Hubble Space Telescope Expert System

The Nickel-Cadmium Battery Expert System (NICBES) is interfaced with the Hubble Space
Telescope electrical power system test bed at the Marshall Space Flight Center. A functional
block diagram is shown in Figure 1.

As presently configured, this breadboard is operated continuously and automatically
telephones the test bed personnel at work at home in the event of a test bed anomaly. When these

personnel arrive at the test bed site, they troubleshoot the system and take any steps necessary to

restore the system to full operational status while protecting critical flight-type components in
the test bed.

NICBES has three major functions in addition to the collection and storage of telemetry

data from the test bed. The first function or mode is fault diagnosis. NICBES will independently
verify the occurrence of an anomaly and recommend appropriate corrective actions.

The second mode is status and advice. NICBES will evaluate the status of each battery in the test

bed (there are six, 23-cell flight-type batteries) and give advice concerning each battery.

The third mode is the decision support graphics which offers 12 plots for any of the six

batteries in the system. These plots display summary data for the 12 previous simulated orbits.
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FIGURE 1. NICBES Functional Block Diagram

NICBES was developed by the Martin Marietta Denver Aerospace Corporation in

Denver, Colorado under contract to NASA/Marshall Space Flight Center. [1] The expert system is

implemented on an IBM PC/AT in Prolog.

Contingency Payload Scheduler

The Space Station Experiment Scheduler (SSES) is a proof-of-concept demonstration pro-

totype expert system which schedules/reschedules payloads very quickly. Although SSES only

employes about a few of the scheduling constraints that the Marshall Space Flight Center

Experiment Planning System considers in Spacelab mission planning, it can reschedule 50 pay-

loads for a full two week period in less than three minutes. It considers power consumption, pay-

load duration, intermittent usage, crew attendance required, and priority class. Though a rela-

tively simple model, this expert system demonstrates that a dynamic rescheduler embedded in a

spacecraft power management system can help handle perturbations to the available power, as-

suring that power is utilized as it becomes available as well as avoiding the unnecessary load

shedding of critical payloads in the event of a reduction of the available power. [2]

Space power has historically cost about $1000 per kilowatt hour versus $0.05 per terres-

trial kilowatt hour. On Space Station maximum utilization of available power will be necessary to
accommodate all the experiments and other payloads on board. In the event of reduction of avail-

able power, it is imperative that a critical load is never shed unless absolutely necessary. A

Department of Defense or European Space Agency payload might be critical for national defense or

due to international agreements; a science experiment may have a critical window for operation;

or a materials processing payload may increase in importance as an expensive crystal nears com-

pletion and cannot be interrupted without incurring flaws.

The SSES was developed in 1985 by Technology Applications Inc. of Jacksonville, Florida

as part of the Space Station Advanced Development program. It is implemented in Large Memory

GC LISP on an IBM PC/AT with 3.5 megabytes. The graphics were coded in Turbo Pascal.
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Space Station Core Module Power Management and Distribution System Automation Project

One of the most ambitious automation projects at the Marshall Space Flight Center is the

Space Station Advanced Development effort for automating the Core Module Power Management
and Distribution (CM/PMAD) system. The CM/PMAD breadboard will employ three expert sys-
tems in addition to extensive conventional automation software to control the power system

breadboard as shown in Figure 2. The systems autonomy is pushed down as far as possible in the
system such that in the event of an automation breakdown at the lower levels, the next higher lev-

els will assume responsibility of the components below them in the hierarchy.
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The first of the expert systems is the Load Priority List Management System (LPLMS). The
LPLMS maintains a real time dynamic representation of all the module loads and relevant facts so

applicable rules can fire to reorder portions of the list as situations change.

The loads in a laboratory module may have dynamic priorities. A critical noninterrupt-
ible materials processing experiment involving crystal growth may have a different priority as
its nears completion. Other factors may change priorities such as equipment malfunctions. An

expert system such as LPLMS is critical in order to determine which loads must be shed in the

event of perturbations to available power for the module. It is imperative that the 'critical' loads

are not shed unnecessarily.

The LPLMS is currently implemented in the production language HAPS on the Symbolics

3600 series workstation. Load priority lists are sent down from the expert system to the conven-

tional processors in the breadboard every 15 minutes.

LES, the Load Enable Scheduler, can schedule and reschedule a number of payloads with
various scheduling constraints. This expert system will generate the baseline schedules for the

breadboard as well as accept information from the other processors on when and how to resched-

ule the power system payloads. LES refines the ground load enable requests and builds a detailed

mission activities list through simulation performance and list passing to the Supervisor

Subsystem Simulator (SSS).

FRAMES is the Fault Recovery And Management Expert System. This expert system watch-

es over the entire breadboard operation looking for anomalies and impending failures. FRAMES

functionality actually extends to the lowest level processors in the breadboard for comprehensive

fault management of the entire breadboard.
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FRAMES is responsible for detecting faults, advising the operator of appropriate correc-

tive actions, and in many cases, autonomous corrective action implementation through power sys-

tem reconfiguration. The expert system will carry out trends analysis seeking incipient failures

and soft shorts as well as open circuits.
The more conventional automation software resides in the power control unit (PCU) and in

the lowest level processors (LLP). The PCU resides on a VME/10 system and performs process

database updates on system data such as the load time enable, load time disable, primary remote

power controller (RPC) number, secondary RPC number, switch permission number, nominal

maximum power value, upper voltage limit value, lower voltage limit value, upper current limit
value, lower current limit value, actual snapshot voltage value, actual snapshot current value, ac-

tual snapshot RPC total power value, and actual snapshot power value. The PCU also generates the

process command list, allocates individual LLP command lists from the command lists generated

by the Supervisor Subsystem Simulator (SSS) to the lowest level processors, allocates individual

LLP priority lists generated from the overall priority list developed by the LPLMS to the LLPs,

maintain the state of the actual load system within the present configuration list, graph the total

power output as a function of time per bus, maintain a failed components list, maintain a major
events list, provide a user interface for switching loads in and out (for emergency use where the

user assumes full responsibility for the breadboard operation), function as the central communi-

cations device, allocate database change information to the SSS, and execute emergency shutdown

procedures.
The lowest level processors maintain their individual command and priority lists, execute

command control as directed by the individual command list, execute local load sheds as directed

by their individual priority lists to save the bus from bad scheduling or overloading, execute

data compression, execute data reporting, handle condition exceptions, execute automatic switch

control, execute list directed switch control, verify configuration limits and allocations, and exe-
cute immediate commanded switch control. These processors are 68010 microprocessor-based
controllers.

The SSS simulates various module interfaces such as to other subsystems, other elements

of the overall Space Station electrical power system, the crew, and ground support elements. It

resides on a Xerox artificial workstation though it is not itself an expert system.

Together these various elements comprise a fairly elaborate approach to power system au-
tomation. It is anticipated that this advanced development effort will contribute to the actual

core module power management and distribution system automation on-board the Space Station.
Martin Marietta is providing the contractor support for this system development. [6]

Marshall Space Flight Center is also cooperating with the Lewis Research Center in a 1990

Power Systems Autonomy Demonstration. This project involves the entire Space Station electrical

power system test bed at two NASA Centers cooperating with the Space Station thermal control

system test bed at NASA's Johnson Space Flight Center. Ames Research Center has overall re-

sponsibility for this project under the Systems Autonomy Demonstration Program.

Intelligent Data Reduction

The IDARE (Intelligent DAta REduction) project is a research effort involving the capture

of the facts and heuristics that battery system specialists employ in determining the significant

components of battery telemetry data. The research will be directed toward the Hubble Space

Telescope power system test bed telemetry data and is expected to result in a knowledge-based

system which autonomously reduces this telemetry data to its significant components for further

trends analyses, improved system state-of-health monitoring, and fault prediction.

It is estimated that at any given time, perhaps 80 to 95 per cent of battery telemetry data

is insignificant. It is hoped that the telemetry data can be reduced by an order of magnitude. As

such data reduction is extremely labor intensive, an expert system would greatly reduce testing

analysis and operational support.

The IDARE project is being conducted in cooperation with the University of Alabama in

Huntsville under an university grant. If successful, applications are expected for complete elec-
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trical power systems as well as other subsystems with propulsion personnel showing a special
interest.

Conclusions

Knowledge-based or expert systems are being demonstrated for electrical power system

applications involving proof-of-concept prototype intelligent systems. Artificial intelligence

approaches should not replace conventional computer programs that work well. Instead, these

knowledge-based systems should be employed to fill the gaps where traditional approaches either

perform poorly or cannot be employed at all.
If autonomous electrical power systems are to be incorporated on future spacecraft,

knowledge-based system prototypes must continue to be developed and demonstrated in fairly re-

alistic electrical power system breadboards and test beds. Program managers must be convinced

that these systems are safe, reliable, and can be developed within cost in a timely fashion.
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ABSTRACT

Space Shuttle Main Engine (SSME) maintenance, whether preventive, scheduled, or
unscheduled, is a major escalating cost item. Significant progress has been made in the NASA
and Air Force communities toward performance of the health monitoring function in
instrumentation, analysis techniques, and envelope (trends and rate of change) monitoring.
Current techniques require that domain experts be integrally involved in the analysis session and
make on-line decisions to direct analysis. The SPARTA Embedded Expert System (SEES) is an
intelligent health monitoring system that directs the analysis by placing confidence factors on
possible engine status, then recommends a course of action to an engineer or the engine
controller. This technique can prevent catastrophic failures or costly rocket engine down time
because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable
rocket engine systems. The SEES methodology synergistically integrates vibration analysis,
pattern recognition, and communications theory techniques with an artificial intelligence
technique - the Embedded Expert System (EES). This integration affords a robustness via the
analysis techniques with an ability to resolve conflicts by the expert system techniques.

INTRODUCTION

A critical element of the Space Shuttle Main Engine (SSME) program is the development of a
turbo-pump health monitoring system (HMS). A HMS that could predict incipient failures and
permit routine maintenance to be scheduled based on performance indicators would dramatically
reduce the need for refurbishment, improve equipment availability, and make maintenance more
cost-effective. The key functions of an effective HMS are shown in Figure 1.

• RECOGNIZE AND CATEGORIZE PERFORMANCE
(Baselinlng Of Performance Standards)

• RECOGNIZE AND CORRELATE INDICATORS OF IMPENDING
FAILURE

(Incipient Failure Prediction)
• RECOGNIZE AND CORRELATE INDICATORS OF NEED FOR

REMEDIAL ACTION
(Scheduling Of Routine Maintenance In A Cost-Effective
Manner)

Figure 1. HMS ESSENTIAL FUNCTIONS

PRECEDING PAGE BLANK NOT FILIVr-".O
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Significant progress has been made in the NASA community toward performance of the
HMS functions. There have been relevant advances in instrumentation [4,1], analysis techniques
[2,5], and in detection of anomalies and failures [3]. Each of these advances has demonstrated
individual attributes useful for an HMS to correlate failure modes with turbo-pump components at
risk. However, an integrated HMS that uses and updates the SSME data base is possible through
the use of emerging AI techniques. AI techniques, specifically a rule-based expert system, can
enhance the functions of an HMS. SPARTA has developed and adapted a set of algorithms to
produce an innovative application of Artificial Intelligence techniques. The keystone of this
application is an expert system that uses confidence levels to resolve conflicts among compound
data, and that heuristically trains on each data set to derive (or modify) classification rules. This
expert system has been named SEES, an acronym for SPARTA Embedded Expert System.

_EE_. ARCHITECTURE

The SEES architecture is shown in Figure 2. In SEES, conventional computation methods
are used to reduce the raw data to a manageable "derived" data set, and to extract pertinent
information (signatures) from the derived data set. This information is then used by the SEES to
derive rules, with the help of domain experts/knowledge engineers, to establish a knowledge
base. In future phases, SEES will use this set of rules to determine engine conditions during
SSME testing.

MAJOR COMPONENTS

As can be seen from the architecture in Figure 2, there are three major subsystems to the
SEES HMS: The SEES front end (SFE), the embedded expert system (EES), and the
supportfunction library (SFL). The SFE processes the raw data to screen obvious anomalies and
to derive the reduced data set, then generates from it an appropriate signature. The process of
data screening, reduction and signature generation is the unique and proprietary innovation of
SEES. The embedded expert system (EES) uses this signature and the reduced data, with the
help of the SFL and the rule set in its knowledge base, to infer the operating conditions at a given
instant, deduce the mean time to failure and recommend maintenance schedules. The SFL, as its
name implies, is a set of supporting functions for the rest of the HMS.

SEES FRONT END (SFE)

The SFE is comprised of signal analysis techniques that convert raw count accelerometer
data to Engineering Units and transform the data to the frequency domain using Fast Fourier
Transforms (FFT) to derive a power spectral density (PSD) for inputto a Data Conditioning Module.
The Data Conditioning Module processes the PSD signal to remove the extraneous components.
Finally, the conditioned PSD is evaluated as a candidate for signatures derived during this
processing (by the Pattern Marcher) or binned to be considered for establishment of another
signature.

SEES SUPPORT FUNCTION LIBRARY (SFL)

The SFL consists of the algorithms that transform reduced data into symbol structures for
use by the Development Engine and/or the Inference Engine to accomplish inference and control.
This transformation is accomplished by applying communications theory and image processing
methods to the SFE conditioned data.

SEES EMBEDDED EXPERT SYSTEM

The Embedded Expert System (EES) is an integral part of the HMS. The EES is a rule based
knowledge system that uses forward chaining strategy, and has the ability to recognize and
categorize performance, incipient failure and the need for remedial action. It consists of a
development engine, a knowledge base, an inference engine, and a user interface.
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Th_ DeveloPment Engine

The development engine is a subsystem of EES which is intimately related to the knowledge
acquisition process; it allows a knowledge engineer to transcribe the knowledge gained from the
domain expert into a set of rules that make up the knowledge base. A basic characteristic of the
SEES problem in analyzing SSME vibration data is the volatility of signatures and the importance
of high rate vibration data. While some rules can be developed, the evaluation of data in real-time
leads to the requirement to merge information from multiple sources. This leads to the use of the
blackboard architecture for storing intermediate hypotheses, the use of a certainty factor merging
heuristic and rule-use counting as a "rule-critic".

The SEES Knowledae Base

Based on SPARTA's study of the training sets, we expect the knowledge base to be quite
large. Our investigation indicated that signatures may be extracted and meaningfully classified.
Thus, the rule set may be ordered in an appropriate manner (e.g., a rule tree) to reduce search
space. The nature of the data is such that one can seldom specify a diagnosis with absolute
certainty. Thus in SEES, certainty factors will be used to reflect uncertain information. These
certainty factors can be either computed algorithmically by the development engine based on
derived or existing knowledge, or estimated by domain experts or knowledge engineers.

The SEES Inference Enaine

The SEES HMS is basically data driven. Thus, a forward chaining strategy is appropriate.
The incoming data, although reduced by the SFE, is still quite complex, and entering the HMS at a
high rate. The EES inference engine must and will have the capability to invoke functions in the
SFL for further data reduction. Perhaps one of the more important tasks of the inference engine is
to determine when an unknown situation (i.e., not in the rule base) occurs. It should be able to
coordinate with the domain expert or knowledge engineer and pass the new information to the
development engine to create new rules, or store the information to accomplish the same at a later
time off-line when a domain expert is available. The inference engine must provide information to
the explainer to produce explanation on demand. The explainer is a subsystem of the user
interface and can provide explanations as to how a conclusion is reached. This can be
accomplished in a variety of ways; the one selected by SPARTA is to leave the time history of
SEES events in the blackboard for post mortem examination.

SEES User Interface

The user inter/ace is the component of an expert system that acts as an interface between
the expert system and the user who is not necessarily a domain expert. Thus, it should have the
capabilities to" (1) Solicit input from the user, (2) Provide output to the user - this output may be in
the form of questions, recommendations or conclusions, and (3) Provide explanations on
demand. One important aspect that can be implemented is a possible data link between the user
interface and the SSME controller. This would serve as a means to assume control of the engine in
unusual situations, such as when an imminent engine failure has been detected, and an immediate
engine shutdown becomes necessary to prevent catastrophic failure. This feature is, of course,
not needed for off-line testing.

IMPLEMENTATION

Preliminary investigation to date has been carried out using a VAX780 computer in
FORTRAN. It is anticipated that the final system will be implemented in FORTRAN or C to run on a
MASCOMP computer. This computer is chosen because of the outstanding data acquisition
capabilities which is a critical aspect of SEES. Equally important is the fact that a variety of
languages and utilities are available commercially for this micro-supercomputer. A decision has to
be made as to the language used to develop the embedded expert system (EES). One can
choose the more traditional approach of using LISP or PROLOG (both of which are available to the
MASCOMP, and both can interface with the rest of the system if it is written in C. We have decided
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touseRULEMASTERbyRadianCorporation.Thisisanexpertsystemshellthatwouldallow us to
develop EES rapidly, and can be integrated to the rest of SEES easily.

PRELIMINARY RESULTS

The vibration time series is analyzed in a discrete data format. The data is first transformed
into a power spectral density (PSD). Each discrete PSD is the power average over a small time
interval at a frequency with a certain bandwidth. The power level of a frequency line is then
temporalized. Figure 3 shows the amplitude time history of one important frequency band. The
accompanying SSME power profile shows the shift from 100% to 104% power level. The
amplitude of the time history shows a marked decrease at that time. Other bands show an increase
at ramp up to 104%. The characterized signatures consist of a covariance matrix, C, which
measures coupling between components of the sample vectors and the mean sample vector, M.
A signature is a measure of the turbo-pump's performance profile at a given load condition. When
a turbo-pump is operated at a load condition for an extended period, its performance may degrade
from nominal to anomalous. This degradation is measured by the HMS and characterized into a
class ensemble of signature, at a load condition. Two signatures characterized from the SSME test
are presented in Figure 4. The spectral components of these signatures are very complicated;
therefore, AI techniques must be used to classify data.

CONCLUSIONS

Preliminary analysis has shown that the SEES development engine successfully extracts
signatures from SSME test data that can be formulated into rules for the SEES knowledge base.
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Tullahoma, TN 37388

ABSTRACT

One of the challenging difficulties in automatic fault

diagnosis is generating a qualitative understanding of how a

physical mechanism behaves in abnormal situations. Numerical

data generated accross time by simulation models reveals

changing internal states and mechanism behavior. However,

understanding and interpreting such data by computers, an

important part of monitoring, operating, analyzing, diagnosing,

and debugging complex physical mechanisms, have been difficult
tasks.

Diagnosis of physical mechanisms if often accomplished by

analyzing various physical parameters qualitatively, i.e. by

analyzing trends and relative magnitudes of parameters.

Temporal information, such as the relative times at which

various parameters exhibit changes in behavior, is also an

important aspect of diagnosis.

An approach is being investigated at the University of

Tennessee Space Institute to apply qualitative and temporal

reasoning to analyze mechanism behavior and to diagnose faults

in physical mechanisms. The present domain is jet engine

diagnostics; however, the approach is applicable to other

domains.

In the present study, numerical simulation models, engine

experts, and experimental data are used to generate qualitative

and temporal representations of abnormal engine behavior.

Engine parameters monitored during engine operation are used to

generate qualitative and temporal representations of actual

engine behavior. Similarities between the representations of

failure scenarios and the actual engine behavior are used to l)

diagnose fault conditions which have already occurred, or about

to occur, 2) increase the surveillance by the monitoring system

of relevant engine parameters, and 3) predict likely future

engine behavior.

The stored failure representations include both sudden

failures and slowly developing fault conditions. As a result,

the system can detect developing faults which have not yet

caused a parameter to exceed safety limits.

The stored representations of failure scenarios also allow
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The stored representations of failure scenarios also allow

predictions of engine behavior to be made. This information is

used by the monitoring system to focus attention on the most

relevant engine parameters. Predictive behavior is also used in

advising the pilot on appropriate corrective action.
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Exploring Hypotheses in Attitude Control Fault Diagnosis

Benjamin Bell
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U7049 P.O. Box 8555 Philadelphia PA 19101

Abstract

Recent activity in spacecraft design has been geared toward providing an assortment

of new capabilities in space, in an attempt to satisfy the demanding mission requirements

posed by such programs as the Strategic Defense Initiative (SDI) and Space Station. These

requirements will include on-board fault detection and fault correction, and current work at

GE Astro-Space is addressing this area through the use of knowledge-based systems. This

paper describes a system which analyzes telemetry and evaluates hypotheses to explain

any anomalies which are observed. Results achieved from a sample set of failure cases are

presented, followed by a brief discussion of the benefits derived from this approach.

1. Introduction

The attitude control subsystem (ACS) orients and stabilizes the satellite after launch

vehicle seperation, maintains pointing during on-orbit and payload operations, and controls

the satellite attitude during orbit-adjust operations. Spacecraft attitude is of critical im-

portance, since a slight error in vehicle alignment not only degrades mission performance,

but also may cause changes in momentum rates that may propagate until the spacecraft is

spinning out of control. Current architectures provide some level of autonomy in the ACS

via closed-loop control, which can generally compensate for_attitude errors attributable

to normal vehicle dynamics. More serious errors are handled from the ground, during a

process which includes a rapid effort to put the satellite into a safe state (thirty minutes

to several hours), followed by an analysis phase which may take several weeks. During this

time, mission performance may be interrupted, a situation which is not compatible with

Government objectives.

To better maintain mission performance and to avoid propagation of attitude errors,

anomalous conditions must be detected and isolated as rapidly as possible. This goal

becomes harder to achieve as satellites become more complex; but if the satellite itself

were capable of performing fault-isolation, then the risk of serious failure would be greatly

reduced, along with the need for highly skilled ground personnel.

The ACS Diagnostic System demonstrates the potential of knowledge-based sys-

tems to offer this capability. As a preliminary step toward achieving satellite autonomy,

this diagnostic program performs ground-based detection and isolation of faults within

a satellite ACS. Detection of an anomaly triggers the generation of hypotheses. By ex-

tracting information from the telemetry useful to its diagnosis, this system independently

"pursues each possible explanation. The likelihood of each explanation depends on features

identified in the telemetry; additionally, explanations are ruled out when contradictory

evidence appears in the telemetry.
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2. Current Diagnostic Procedures

Present techniques for diagnosing ACS faults rely on attitude error limits for detection.

If the satellite attitude error limits are exceeded, the primary objective is to put the satellite

into a safe state, which may involve unloading the momentum in the wheels, performing

Auto Sun Acquisition, or disabling thrusters. Diagnosis proceeds only after the satellite

is in a safe configuration. The principal technique employed in locating the source of the

anomaly is to switch to a redundant component and then recheck the anomalous telemetry.

In the case of a Reaction Wheel anomaly, the suspect wheel is turned off and the telemetry

is monitored with the satellite operating on three wheels.

Effective application of these procedures requires some degree of expertise. For exam-

pie, the choice of which component to switch with its redundant partner relies in part on an

examination of certain informative telemetry behaviors. The diagnostic system, therefore,

requires expertise, so that it may apply knowledge of the ACS and of telemetry analysis

to explain a currently observed anomalous condition.

3. Expert Knowledge

To trouble-shoot anomalies, ACS analysts generally rely on their knowledge in the areas

of telemetry interpretation, failure mode behavior, and diagnostic strategies. Telemetry

interpretation knowledge is applied when the analyst extracts useful information from the

large volume of telemetry data. Examples of such information are transients and trends.

Failure mode knowledge may be encoded by capturing the expert's mental represen-

tation of a failure. Analysts often characterize an ACS failure in terms of the symptoms

(anomalies) which may appear during that failure, including_qualitative measures of the

support a particular symptom lends to a hypothesized failure. The expert might indicate,

for example, that during a tachometer failure there is a high probability that the wheel

speeds will oscillate.

Knowledge about diagnostic strategies defines the expert's own internal protocol for

diagnosing faults. It was determined through interviews with ACS analysts that the expert

initially reacts to an anomaly by considering all possible explanations, creating a mental

model for each hypothesis. The expert then seeks evidence which can distinguish among the

possible failures, primarily by comparing the actual telemetry to the predicted observations

for that failure. Important also is the expert's ability to rule out a failure on the basis of

evidence to the contrary. The expert may explain, for example, that the possibility of a

drive failure may be ruled out if the motion in the opposite wheel indicates that the wheels

are spinning normally.

4. Encoding Expertise

An appropriate representation must be selected for each of the three types of knowledge

discussed above. Telemetry interpretation knowledge consists of categorical descriptions

of anomalous behaviors, or features. This knowledge is encoded as rules, with each rule

capable of identifying whether a specific feature is present in a telemetry point's recent
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value history. The one-to-one correspondence between feature types and rules facilitates

knowledge engineering and rapid prototyping.

Failure mode knowledge characterizes ACS failures as the collection of symptoms which

may appear during that failure. A suitable representation for this type of expertise is a

schema, an object which is composed of slots that specify the attributes of the schema. One

schema completely defines a failure in terms of its symptoms, with each symptom described

in its own slot. This slot description identifies the name of the symptom, the maximum

time it would take for the symptom to appear during the failure, and the likelihood of

the symptom appearing during the failure. Likelihoods are expressed qualitatively with

the symbols 'H', 'M', and 'L' (High, Medium, and Low), 'A', and 'N'. An 'A' indicates

that the symptom must always appear, and 'N' that the symptom will never appear.

Figure I shows a sample failure schema. Because each symptom has attributes which

(defschesa

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

(symptom

pss+.fmilurm

((jump-to-zero pss+.current.usm) R (me 08 35)))

((stemdy-decreasa pss-.current.use) R (SO 01 30)))

((Itemdy-decrease yrss*.current) fl ($8 84 31)))

((stemdy-dmcreass yrss-.current) n (me S4 38)))

((grmdual-dmcrmmse ostimmtsd.mom-y) fl (OO OS OO)))
((transient estlamted.att-p) H (oe $00S)))

((transient estimated.eta-r) N (05 $0 35)))

((transient estimated.art-y) H (SO O0 OS)))

((unbmlmncmd py+.uheel.spsed py-.uheel.speed) fl (so 02 3e)))

((oscilimtion prt.uheel.drive) L (88 88 SO)))

((oscillation pr-.uheml.drivm) L (me o8 me)))

Figure 1: A-sample failure definition.

are independent of any one failure, schemas are used for defining symptoms as well. In

this case the symptom is linked with failures by identifying each failure as a possible

cause of the symptom, where appropriate. This schema organization allows rapid access

to the predefined symptom and failure characteristics, and its modularity permits rapid

prototyping as well.

5. Encoding Diagnostic Strategy

The third type of expertise, diagnostic strategy, differs in that it is comprised of procedural

knowledge, whereas the two previous categories of expertise encompass declarative knowl-

edge. This leads to a different implementation: rather than employing rules or schemas,

this knowledge is represented as meta-rules which govern the way in which the declarative

knowledge is applied to the problem-solving task.

The objective of this meta-structure is to implement a reasoning strategy derived from

the techniques employed by human experts. The diagnostic knowledge discussed earlier is

suitably represented using the Set Covering Model [2]. Applying this approach, generating

hypotheses to explain a symptom is simply a matter of locating the symptom's schema
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and reading the possible causes for that symptom. Each such possible cause then becomes

a hypothesis. Hypothesis evaluation is accomplished by observing how well a hypothesis

covers the symptom-set, i.e. how many of its symptoms have been detected. Symptoms

vary in how strongly their presence supports a hypothesis, so this factor is incorporated

into the evaluation procedure. In addition, some symptoms are required to support a

hypothesis, and so that symptom's absence will allow the system to rule out the hypothesis.

Conversely, some symptoms provide contradictory evidence, so that a hypothesis may

be ruled out on the basis of that symptom's presence. This strategy is an appropriate

representation for the diagnostic expertise discussed above, but requires a mechanism for

handling the multiplicity of hypotheses. Fortunately, such a mechanism is available in this

system.

Hypothetical Reasoning

The use of hypothetical reasoning is of prime importance to the diagnostic capability

of this module. Using this approach, one hypothetical situation ('viewpoint') is created

for each possible failure. The viewpoints are distinct from eachother, so each operates

under its own set of assumptions (including of course the assumption about which failure

occurred). When evidence rules out a hypothesis, the associated viewpoint is eliminated.

Thus the use of hypothetical reasoning allows the system to pursue multiple hypotheses

simultaneously. The reasoning within each viewpoint is geared towards supporting the

hypothesis which generated that viewpoint, by setting goals to look for symptoms of the

corresponding failure, and so is called 'goal-directed reasoning'.

Goal-Directed Reasoning

Hypotheses are generated in a forward-reasoning fashion. This means that the detection

of a symptom triggers the hypothesizing mechanism, because the system has been 'told'

that if a symptom occurs then it should hypothesize all failures which could cause that

symptom. Once the hypotheses have been generated, however, the reasoning occurs in

reverse. In backward reasoning, the system is told, for example, that if Symptom-A occurs

then the likelihood of Failure-1 is increased. This generates a goal of detecting Symptom-

A. Suppose the symptom knows that if the reaction wheels are unbalanced then conclude

that Symptom-A has occurred. Then a subgoal is generated to detect an unbalanced wheel

pair.

Within each viewpoint, then, unique subgoals are generated. This is a very important

feature because of the computing expense involved in detecting symptoms. The savings is

realized by only looking for symptoms which will help to support or rule out hypotheses.

Savings also is achieved in the case when a hypothesis is ruled out, because all goals

generated to support that hypothesis are eliminated.

6. Implementation

Combining this reasoning strategy, the failure and symptom schemas, and the feature-

identification rules results in a system which emulates the diagnostic performance of a

human expert. The process operates first in a fault detection mode, and then if triggerred,

in a fault isolation mode.
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Fault Detection

The current practice of fault detection by limit-checking has an inherent limitation,

in that an anomaly may go undetected because no limits are exceeded. Moreover, even

when a telemetry value exceeds its limits, it may not do so immediately upon failure, but

instead may remain within limits for several minutes after the failure occurs. Further,

simulations of ACS failures indicate that transients are reliable fault indicators. The fault

detection mechanism used in this system, therefore, achieves the earliest possible fault

detection, by using any ACS transient to trigger activation of the diagnostic procedures.

This detection is the responsibility of the feature-identifying rule for transients, which

monitors the histories of ACS telemetry points. The detection of a transient triggers the

creation of viewpoints, each of which contains the assumption that one particular failure

has occurred.

Fault Isolation

The meta-rules responsible for viewpoint creation not only hypothesize failures, but also

scan each failure's list of symptoms, and set as goals the determination of these symptoms'

presence or absence. These goals are satisfied by the feature-identifying rules, each of

which is specific to a particular symptom type. A goal to find an oscillation in a wheel

drive, for example, would activate a rule which 'knows' how to identify oscillations. In this

way, only those symptoms relevant to the diagnosis are investigated.

The status of a symptom is initially UNKNOWN.Once it becomes a goal, it is assigned an

expiration time, by adding that symptom's maximum appearance time to the current time.

If it is observed prior to its expiration, it is assigned a status of KN0WN-PRESENT, otherwise

its status is KNOWN-ABSENT. This information is processed by probability determination

rules, which maintain a current probability for each hypothesized failure. The contribution

a symptom's presence makes to a failure's probability depends on the likelihood, expressed

qualitatively with the symbols 'H', 'M', and 'L', of that symptom occuring during the

failure. These values are stored as part of the symptom slots in the failure schema, and

are assigned numerical equivalents for computational purposes. If a symptom is known to

be absent, it contributes a corresponding negative likelihood. Unknown symptoms are not

included in the calculation. Probabilities are kept current by rules which react to a change

in a symptom's status, by adjusting the probability of any failure related to that symptom

(i.e. any failure identified as a possible cause in the symptom's schema).

The probability analysis helps the operator to distinguish among failures by providing

a basis for comparing the alternative hypotheses. But more powerful than that is the

system's capability to rule out failures on the basis of evidence in the telemetry. A failure

may be ruled out by the program under two conditions (the operator may also rule out a

failure). The first occurs when a symptom required to support the hypothesis is absent.

This is detected when a symptom identified in a failure schema as an 'A' symptom has a

status of KNOWN-ABSENT. The second condition occurs when a symptom which would not

appear during this failure is observed. This is indicated when a symptom identified in a

failure schema as an 'N' symptom has a status of KNOWN-PRESENT. When a failure is ruled
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out, all goals set to support that hypothesis are removed, and the reason for ruling out

the failure is recorded in its schema.

7. Test Environment

The diagnostic capability of this system was examined within a test environment which

provided simulated spacecraft telemetry and an interactive operator station. The telemetry

was derived from actual satellite telemetry (for 'normal' data) and from an ACS simulator

(for failure data). Telemetry processing software generates telemetry frames and sends one

frame to the diagnostic system every two seconds, to create a real-time environment. The

operator station keeps the operator fully informed about detected anomalies and about

the status of each failure being investigated. Three displays are available: a table of all

detected anomalies, a symptom display detailing a selected symptom, and a failure display

providing data about a selected failure.

8. Example

When the ACS Diagnostic System first detects a transient in ACS telemetry, the hy-

pothetical reasoning mechanism creates four possible explanations: a tachometer failure,

a sun sensor failure, a wheel drive failure, and an Attitude Control Electronics (ACE) fail-

ure. The goal-directed reasoning then sets as goals the detection of symptoms appearing

in each of these failures. As a result, the feature-identifiers are activated and telemetry

analysis begins. Figure 2 illustrates the result of the operator selecting a ruled-out failure

for display. A few moments later, the operator selects an observed anomaly, which brings

up the symptom display shown in Figure 3. After about f_ty seconds, a single failure

remains, but the system continues its analysis until the operator decides to accept the

failure. Figure 4 shows the main display after two and a half minutes, identifying the

relevant features found in the telemetry since the failure was first detected.

9. Conclusion

This prototype demonstrates the promise of the approach used because effective rea-

soning was achieved using a straightforward representation and relatively simple heuristics.

Further, because of the way the expertise is segmented, the system can not only be made

to perform better in this domain, but can also be applied to different problem areas.

Installing operational versions of an expert system such as this one thus becomes more

cost-effective, as new diagnostic systems can be generated from existing ones by replacing

a specific knowledge base and leaving the reasoning strategies intact.

Certainly, then, AI-based diagnosis will help to increase mission reliability and reduce

the need for highly-skilled personnel. As this technology evolves, advances in the intelli-

gence of these systems will provide even greater benefit. One way to improve knowledge-

based systems is through the use of learning. Expert systems can learn by modifying their

strategies when such strategies fail to provide acceptable solutions. This approach has been

tested in a satellite diagnosis system [1], and future work will provide large reductions in

the time and cost involved in knowledge engineering.
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TRARSIERT PY-.k'HEEL.SPEED 13:20:e0
TI_rtSlENT PR+.MHEEL.DRIVE 13:19:54 PSS-.FAILUR£
TRflMSIEMT PR-._HEEL.DRIVE 13:19:54 ACE.FRILURE
TRflltSIENT PR-.I_EEL.GPEED 13:19:54 PR'.IRCH.FRILURE
TRRMSIENT PY..HHEEL.DRIVE 13:19:54
_RRMSIEMT PY..MHEEL.6PEED 13:19:54
TRAMSIEMT PY-._HEEL.DRIVE 13:13:54
TRR_SIERT ESTII4RTED._TT-R 13:19:5_
TRRNSIE_T ESTI_RTED.RTT-P 13:19:48
TRanSIENT PR*.MHEEL.SPEED 13:19:48

Figure 4: Main Display Screen minutes into diagnostic.

Another area under investigation is the use of model-based reasoning. An expert system

could predict behavior using models of the satellite and its subsystems, and so could

identify faults by differences observed between actual behavior and behavior predicted by

the model. Isolation of faults is also facilitated by the causal links implicit in these models.

Applying models to diagnostic expert systems is currently under study at GE Astro-Space.

Results from this and other research promise to put more intelligence into AI, so that the

increasing complexity of space systems is paralleled by our improved ability to control and

maintain them, and eventually, by their ability to maintain themselves.
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ABSTRACT

In this paper an expert system for diagnosis and recovery of failures in the freon cooling loop
of the European retrievable experiment carrier EU R ECA is described.
This system demonstrates the feasibility of a functional scope of expert diagnostic systems
which appears to be essential for practical applications of such systems in space technology.
This scope comprises : early warning and treatment of incomplete information, fault tolerance,
identification of failure superpositions (particularly involving failed sensors), intelligent reaction
to unforeseen events and detailed status display for optimal recovery action.

1. INTRODUCTION

Particularly in view of the implementation of expert systems for failure diagnosis and recovery
on autonomous spacecraft, but also with respect to their application asground-based consultant

systems, a certain enhanced functionality of such systems appears to be essential, covering in
particular early warning and treatment of incomplete information, failure superposition, intelli-
gent reaction to unforeseen events, tolerance to isolated faults in the knowledge base and
detailed status display for optimal recovery action.

In this paper an expert system is described which, in its first development phase, has been
used to implement and assessthe technology required for the realization of these requirements
for the diagnostic process.As such it could initially be used asa ground-based operator's consulting
system, serving at the same time as test-bed for a further refinement of this technology for
subsequent on-board applications.

2. THE COOLING LOOP OF EURECA

As system to be monitored the cooling loop of EURECA was chosen with the aim of a later
expansion of the knowledge base to also include the thermal control unit, thus providing the
complete TCS asapplication domain in the final stage.

The cooling loop of EURECA is depicted in Figure 2 showing the pump package (FPP) con-
sisting of two redundant pumps of which one drives the cooling medium, freon, through the
experiment line (upper branch) where the freon cools the experiments, then through the two
radiators (Rad +x and Red -x) where the heat taken up by the freon is dissipated and finally
through the equipment line (lower branch) where equipment such asbatteries and power distri-
bution units are kept approximately at room temperature.

The fine tuning of the freon temperature is achieved by small adaptive heaters positioned
along the experiment and equipment line aswell ason the radiators.

The sensors are shown as icons in Figure 2 and measure pump inlet pressure (Pin), pump
outlet pressure (Pout), pump inlet temperature (Tin), radiator inlet temperature (Ts3), radiator

outlet temperature (Ts1,=), freon quantity in the accumulator (Acc. Q.) and the electrical pump
current (Ip). Moreover, e delta pressure switch (dP) gives a signal if the pump pressure head has
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broken down. (It should be mentioned that the question whether all these sensors will be
available for EURECA is still under discussion. However, as the initial development stage of the

expert system only aims at a technology demonstration, the exact number and type of sensors
used isnot crucial).

In addition to these direct measurements, the total power consumed by the adaptive heaters
for the experiment line (Pwr Ex), the radiators (Pwr +x and -x) and the equipment (Pwr Eq) is
also used, since changes in this power can serve as indirect indications of changes in flow, thus
substituting to a certain extent the fact that a direct flow measurement will not be available for
the EURECA cooling loop.

3o KNOWLEDGE REPRESENTATION

EUREX D has a rule-based knowledge representation which is characterized by :

Global monitoring :
Diagnosis is not only based on single sensor monitoring but on a global assessment of the
concurrent readings of all sensors, identifying characteristic data patterns and relations (such
as temperature gradients along the different sections of the cooling loop) thus providing a
broad basis for the diagnostic process.

Indirect monitoring :
Apart from a direct interpretation of sensor signals such as interpreting the activation of the
delta pressure switch as pump performance degradation, extensive use is made of indirect
monitoring such as taking a flow reduction as additional evidence for the pump performance
degradation, or using temperature readings for a measurement of flow as indicated above, etc.

Redundant monitoring :
In the reasoning process ALL known evidence for a given anomaly is taken into account thus
allowing for incomplete or even partially erroneous information or knowledge to be processed
without grave consequences since the system's dependency on individual bits of information
or knowledge is greatly reduced.

Multi-valued logic :
Taking all known evidence into account implies the use of non-conclusive evidence :
For instance, the flow reduction mentioned above as being indicative of a pump performance
degradation could also indicate a flow blockage or even a superposition of both anomolies.
Therefore rules generally hold only partially, which is represented by implication strengths o
taking values between 0 and 1, assigned to the rules.

o Causal connectivity :
Although EUREX D does not reason "from first principles" but relies on knowlege based on
engineering experience and heuristics, it is able to identify causal connections between states
(e.g. a flow blockage being the cause of a flow reduction) for greater transparency and com-
pleteness in the description of the system's state. The knowledge necessary to identify these
causal connections is provided by pointers assigned to the states.

4. INFERENCE MECHANISM

The various steps in the knowledge-based data processing, which are also reflected in the
system's architecture shown in Figure 1, are given by :

o Data processing •
i.e. the computation of temperature gradients along the various sections of the cooling loop,
pressure differences etc.
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o Data classification :
i.e. local classification of the data in relation to the nominal interval generating "observations"
such as "temperature high", "pressure normal" etc.

o Sensor state assessment :
Dedicated rules check the plausibility of sensor readings on the basis of these observations
and assignbelief values to the sensors : 1 for normal operation, 0 for degraded sensors.

o System state assessment :
For each system state, all rules pointing to this state are "tickled" and the implication streng-
ths of fired rules are collected by an accumulation function leading to an integrated certainty
factor. In the case of several inference steps (where system states serve asevidence for other
system states) composite implication strengths are computed by propagation functions. In
particular sensor belief values of 0 simply cause any inference based on this sensor to drop
out of the reasoning process.

o State evaluation :

States with certainty factor 1 are displayed as diagnoses. In case such cannot be found,
several states with the highest certainty factors are presented as possible but not conclusive
diagnosis. Diagnosed states are displayed in columns, the states given in a certain column
always being the cause of the states in the adjacent columns to the left, thus generating a
detailed status display which is not just based on the primary cause of an anomaly.

o Recovery actions :
Depending on the diagnosis, appropriate recovery actions are selected. When the diagnosis
is not conclusive, i.e. when it consists of several states with certainty factors less than one,
the suggestions for recovery actions obviously also cannot be conclusive but are qualified by
priority factors which are functions of the certainty factors and possible additional informa-
tion (such as the rule to always react to the most hazardous situation first, even if it has a
comparatively low certainty factor). However, this identification of recovery actions has not
yet been implemented in EUREX D.

5. IMPLEMENTATION

EUREX D is being developed on the LISP-based development environment KEE and runs
on SYMBOLICS machines.

Sensor-dedicated demons are responsible for the data classification described above. States
are objects (units in KEE terminology) automatically collecting the evidence pointing to the
states and computing the integrated certainty factors.
Rules are grouped into classes corresponding to their firing priority in the inference process.
Based on KEE's facilities the man-machine interface is strongly supported graphically, facilita-
ting knowledge acquisition and explanation of the reasoning processes.
In particular, the sensor readings are shown as bar graphs and their classification as shaded/
non-shaded areas, responding actively to the input data. Conversely, the bar graphs can be
mouse-manipulated to preset the sensor readings for an initial nominal and a final anomal
state for an in-built test simulator. This simulator generates, at fixed time intervals At, the
sensor readings of the intermediate states which develop as the anomaly evolves from the
initial nominal state to the preset end-state.

At each _ t EU R EX D then performs its diagnosis on the sensor readings of these intermediate
states.
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6. FUNCTIONAL SCOPE

EUREX D displays the following functional scope corresponding to the requirements listed

in the introduction :

o Early warning and treatment of incomplete information :
Due to this fact that the reasoning mechanism is based on multi-valued logic and can process
non-conclusive evidence, the system does not depend on the sensor data patterns character-

istic of fully evolved anomalies for its diagnosis, but is able to process first symptoms of

developing failures (i.e. incomplete information), presenting assumptions of several possible

failures (weighted with certainW facto.'s less than 1) for early warning and preventive action.
An example of an assessment of the evolving symptoms of a flow blockage is given in Figures
2-3. A similar treatment applies when the incompleteness of information is due to other

reasons, such as reduced sensor availability etc.

o Failure superposition :
Obviously a premeditation of all failure superpositons for a diagnostic system is impossible,

and, like most other diagnostic systems, EUREX D is designed for the diagnosis of single

failures only. However, it does display the ability to treat failure superpositions to a fair
extent :

Degraded sensors are detected by dedicated sensor rules and taken out of the diagnostic
process as described in Chapter 4. The diagnosis of simultaneously occuring system anomalies

then proceeds on the basis of incomplete information as shown above. Thus concurrent
sensor failures and system anomalies can be discerned.
Concurrent system anomalies can obviously be detected if they do not have opposing effects
on the same sensors. Otherwise the system will again offer several assumptions with certainty

factors less than 1. For example the superposition of a flow blockage and a leak leads to the

assumption of pump performance degradation (c.f. = 0.5), leakage (c.f. = 0.7) and flow

blockage (c.f. = 0.5).

o Treatment of unforeseen events :

Processing of non-conclusive evidence in EUREX D also facilitates intelligent reaction to non-

premeditated events. On the basis of the subset of recognized features, known situations are
enumerated which have the greatest similarity to the unforeseen event.

At the same time, the fact that these are just assumptions is signalled by certainty factors less

than 1.

o Tolerance to isolated faults in the knowledge-base :

Regardless of whether such faults are due to erroneous coding or some irradiation of com-

puter memory in case of on-board expert systems, it is imperative that an expert system does
not react catastrophically in case of such error.
Due to the excessive knowledge redundancy (see chapter 3) this tolerance is indeed given to a

great extent in EUREX D, where most isolated faults are "drowned" in the "majority vote"

of the remaining evidence.

o Detailed status display :
The inclusion of states causally connected to primary failure states for greater detail of status

display has already been described in Chapters 3 and 4.

7. CONCLUSIONS

An expert system for the failure diagnosis of the cooling loop of EURECA has been described

which displays a couple of features which appear to be essential for practical applications of
such expert systems in space technology, the main aspects of the underlying methodology

being given by knowledge redundancy and multi-valued logic.
It should be noted, however, that the management of uncertainty involved still poses some

problems in the case of very large knowlege-bases and future work will have to concentrate on

this aspect.
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ABSTRACT

The development of robotics applications for space

operations is often restricted by the limited movement available

to physically guided robots. Free-ranging robots can offer

greater flexibility than physically guided robots in these

applications. This paper presents an object oriented approach to

path planning and task scheduling for free-ranging robots which

allows the dynamic determination of paths based on the current

environment. The system also provides task "learning" for

repetitive jobs. This approach provides a basis for the design of

free-ranging robot systems which are adaptable to various
environments and tasks.

INTRODUCTION

The development of robotics applications for space

operations is often restricted by the limited movement available

to physically guided robots. Free-ranging robots can offer

greater flexibility than physically guided robots in these

applications. However, the use of free-ranging robots introduces
two major complexities: path planning and task scheduling [5].

This paper presents an approach to path planning and task

scheduling for free-ranging robots which allows the dynamic

determination of paths based on the current environment, and

provides task "learning" for repetitive jobs. This approach

provides a basis for the design of free-ranging robot systems

which are adaptable to various environments and tasks.

The system described is being developed for applications

which are best accomplished through the use of free ranging

robots. Some examples of such applications are operations in the

various modules of the space station, work in hazardous

environments, and industrial warehouse operations. Several goals

are established for this research. The system should provide
for:
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the ability for the robot to operate in different

environments, dependent only upon the existing knowledge

of each environment;

the ability to execute requested

knowledge of spare parts', tools',

locations;

tasks based on the

and work stations'

- the ability to operate in a multi-robot environment;

- the requirement of a task definition only once; and,

- the use of previously defined paths whenever possible.

The system depends upon the use of a central control computer

which contains knowledge of each operating environment, and

controls all modifications to that environment.

CONTROLLED OPERATING ENVIRONMENT

The system is based on the concept that all dynamics in an
environment are controlled by a central computer which uses a

combination of artificial intelligence techniques and classical

algorithms. In the current project, the environment is defined

initially by the user; subsequent changes to the environment are

performed by, and "remembered" by, the centrally controlled
robots within the environment. All tasks and operations

(including inputs to and outputs from the environment) are

scheduled and planned before _xecution. The central computer

defines the shortest path between the starting point and ending

point of a task, monitors the location and use of all items

required to complete a task, and coordinates the task with other

robots within the environment.

The controlled environment also contains storage sites (for

inventory, tools, spare parts, etc.), work stations (where the

task is actually performed), and home bases (where the robot are

be recharged when as necessary). The central computer maintains

all necessary information and knowledge on storage sites, work

stations and home bases. Such information includes location

parameters, content status, idle/busy status, etc., and

appropriate updates are made based on the dynamics of the

environment.

The control system described in the paper has been developed

on a Symbolics 3620 AI work station. The programs are written in

Common Lisp but also utilize the Windows and Flavors packages

available on the Symbolics, which provide an object oriented

programming base. Each work station, storage site, robot, path,

and task is represented as an object, with particular

characteristics associated with each. In order to monitor robot
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operations within the environment, the current program

graphically simulates the results of the path planning and

scheduling routines performed when a task request is processed.

PATH p_ANNING AND _EARNING

Several researchers have investigated path planning in

various environments. Trivedi, Gonzalez, and Abidi worked on

robotics control for hazardous environments [6]. Path planning

for a manipulated arm robot has been researched by Jentsch [4].

Taghaboni and Tanchoco have investigated path planning of free

ranging robots [5]. Their work is based on selecting the best

path from known paths depending on the path _roviding the

shortest time to completion [5]. The system devel_ped by Kaiser

and Hawkins deals with the control of free-flying robots, and

selects a path based on the cost function [3]. Weisbin has

described work in path planning, as well as learning concepts,

for autonomous robots [7]. The system described here draws from

the above mentioned research, but takes a somewhat different

approach. Not only is collision avoidance used in path planning,

but the knowledge of item locations allows the robot to choose

where it needs to go to obtain tools and spare parts, and where

the work is to be performed. Knowing this, the most efficient

path for completing an entire task can be determined.

Tasks are given to the AI control center by the user. The

user specified task information is stored in a relational

data/knowledge-base. Tasks, therefore, need to be defined only

once. Thereafter, user specification of the task name will allow

the control system to access information and knowledge required

for task completion. As more and more tasks are defined, the

power of the system increases and the amount of task information

required from the user decreases.

Once a task is defined, the central computer searches the

data/knowledge bases for the required item information. The

movements of the robot to acquire the items and perform the

desired operations are then planned, including collision

avoidance of static objects and other moving robots. The robot

movement is scheduled via a recursive routine which locates any

obstructions in the direct path between two points and determines

the shortest path around those obstructions. It then checks for

obstructions in that path, until a clear path between the two

locations is found. Once the task has been planned and

scheduled, the control sequence is sent to the robot for task

performance. The control computer can also be used to define

actions to be taken by the robot upon task completion.

When a path is determined, any other tasks requiring

movement between the same points can use the previously

determined path, without requiring recalculation by the recursive

functions. However, if the environment has changed (objects
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added or moved) the recursive path finding routine is called and

the new path subsequently stored for future use. Even when path

modifications are made for a given task, the items and operations

required to complete that task are "remembered" by the control

computer from the Inltlal definition of the task.

The pre-performance planning routine also allows for

colllsion avoidance between robots in a multiple robot

environment. Since all tasks and paths are determined prior to

execution, the central computer knows where each robot is going

to be at a given time and can use this information to determine

the path for a new task. The path may Include avoiding other

robots in the environment by alterlng the path or simply waiting

at a given location for another robot to pass.

LIMITATIONS AND ADVANTAGES

Among the advantages of this approach over other approaches

being investigated are the increased flexibility of the system

and the reduced overall CPU time. The increased flexibility is

provided by: (1) shortest path determinations based on the
current environment, (2) multi-robot operations within the

environment, and (3) path modifications when required by the

dynamics within the environment. The reduced CPU time results

from not only the removal of continuous collision avoidance

requirements but also the task and path "learning" capabilities

of the control computer.

The major future enhancements to this approach should

include: (1) developing the capability for a robot to assist in

defining the initial environment via sensory enhancements; (2)

providing the robot with the ability to search for a clear path

through or around closely grouped objects; and (3) integrating

classical algorithms for the performance of routine tasks once a

robot has been placed at a work station. Each of these areas are

being examined by current research and development efforts

[i][2][6].

CONClUSiONS

This paper presents an alternative solution to the problems

of path planning and task scheduling for free-ranging robots.

The approach is not limited to pre-defined paths and intersection

nodes, but rather defines each individual path based on the

current environment. The use of artificial intelligence

techniques allows the control computer to monitor and modify the

dynamic environment and to plan and schedule tasks accordingly.

Complete development of this approach will allow the continued

advancement of applications for free-ranging robots.
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ABSTRACT

This paper presents an ongoing project in developing a Task-Level Robot
Programming and Simulation System (TARPS). The objective of this research is
to design a generic TARPS that can be used for a variety of applications. Many
robotic applications require off-line programming, and a TARPS is very useful
in such cases. Task-level programming is object-centered in which user
specifies tasks to be performed instead of robot paths; graphics simulation
provides greater flexibility and also avoids costly machine setup and possible
damage. A TARPS has three major modules: world model, task planner and task
simulator. The system architecture, design issues and some preliminary results
are given in this paper.

I. INTRODUCTION

Robot programming systems can be divided into three broad categories:

guiding systems in which the user leads a robot through the motion to be

performed, robot-level programming systems in which the user writes a computer

program specifying motion and sensing, and task-level programming systems in

which the user specifies operations by their desired effects on objects [8].

Guiding systems are primitive, e.g., there are no loops, conditionals, or

sensors, but are easy to use and can be implemented without a general-purpose

computer. Robot-level programming systems have the capabilities lacked by

guiding systems; however, the user must be familiar with both computer

programming and robot manipulation. Task-level programming is an attempt to
shift the burden of detailed robot programming from the user to the computer

where only goals or tasks need to be specified by the user. Recently, more and

more robotic applications require robot programming to be done off-line. This

is often complicated by frequent task change and critical timing requirement.

A Task-Level Robot Programming and Simulation System (TARPS) can be very

useful in such cases since task-level progrmming is mL'ch more efficient than

robot-level programming and guiding, and through computer simulation extensive

experiments and analyses can be performed without the high cost of machine
setup and risk of damage.

The system architecture of the TARPS being developed consists of three

major modules: world model, task planner and task simulator as shown in Fig.

1. Based on the world model, the task planner translates object-centered task

specifications to appropriate robot motion sequences. The robot motion se-

* This work was supported in part by Tokico, Ltd.

** Mr. Narayanan is now with Dept. of Elec. & Comp. Engr., Univ. of Calif.,
Davis, CA 95616.
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quences and the world model can be simulated on the graphics terminal. The
high-level task planning part is implemented in LISP, object model in FLAVORS,
and robot motion synthesis in FORTRAN.Certain important issues such as object
representation, collision avoidance and trajectory planning are also ad-
dressed.

II. WORLD MODEL

Task-level programming and simulation cannot be achieved without a world
model. This world model should include a robot model, physical object model
and environment model. The robot is modeled as a mechanical linkage system
with various joint parameters and constraints. These parameters and spatial
geometry of the manipulator are needed to compute and simulate robot motion.
3-D object representation has been a major research topic in computer vision,
CAD/CAM and computer graphics. A 3-D object can be represented by one of the
three general classes: (I) surface or boundary, (2) sweep and (3) volume. We
adopted a surface-based representation scheme based on the evaluation in [4]
and the following reasons:

1) We plan to derive the object model from the CAD model, and the sweep
representation has been used only to a very limited extent in CAD.

2) Surfaces can be recognized by vision or range sensors and so any repre-
sentation scheme utilizing surface descriptions can be easily integrated into
a sensor-based robot planning system.

Any 3-D planar object can be represented by a graph where every vertex,
edge and surface of the object corresponds to a node in the graph, and the
arcs of the graph are the connected to relations. Each node can be implemented
as a computational object with certain slots. For example, a vertex node may
have slots for vertex_id, x, y, and z coordinates, and relatededges. Data
from other nodes can be obtained by message sending. At present, the object
model is entered through a menu-driven interface; simple object models such as
rectangular blocks, cylinder, cone and sphere can be entered through the menu.
Once simple object models are defined, composite objects can be constructed in
a way similar to that of Constructive Solid Geometry (CSG) representation.
Algorithms for constructing object model from CAD data and B-splines repre-
sentation are under development. The environment model has a world frame and
coordinate frames for objects and robots. Semantic network and homogeneous
transform are used to express their positions with respect to one another.

A. Surface-Based Object Representation

The surface representation of objects makes use of "faces." Any "face" of

the object can be considered as a subset of the enclosing surface or boundary

of the object. Conversely, the union of all possible "faces" of an object

constitutes the boundary of that object [11]. For 3-D planar object the repre-

sentation primitives are boundary, faces, edges and vertices. The primitive of
a "physical object" is represented as a "computational object" [12]. A com-

putational object is typically characterized by a set of "instance-variables"

whose values are used to determine the current state of the object and its

relation with other objects. Furthermore, there are procedures which can be

used to determine the attributes of other objects and to make decisions to

schedule operations concerning that object. Listed below are some of the
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information required to characterize the face. Each face of the object is

represented using the same scheme as is used for other primitives.

face id: Used for the purposes of identification of a face.

adjacent_to: Has a list of face id's as its value.

normal vector: Equation of the vector normal to the face. This value can be

computed from the face vertex positions of a planar surface.

For a quadric surface, however, we require information about

the surface shape.

related_edges: A list of edge_id's that belong to the face.

B. Conversion from CAD Data

The modelling scheme described earlier requires a lot of information to

represent the object. There is an increasing need to obtain such information
from a CAD data base of the task environment [4]. For example, the dimensions

of a rectangular block can be obtained from a CAD model of the block. From

these dimensions, it is possible to select a reference frame for the block and

then compute the relevant information such as: 1) Location of vertices with

respect to the assigned object reference frame; 2) labelling of edges by

applying a rule that any two vertices constitute an edge; 3) labelling of

faces by computing those sequences of edges which form loops, i.e., staring

from any vertex, find those edges which, when traversed, lead us back to the
initial vertex without going through any vertex twice; and 4) computation of

the face normal vector from the equation formed by the plane described by the
face's vertices.

III. TASK PLANNING

The role of the task planner is to take task-level specifications from

the user and generate manipulator-level specifications which can be used for

simulation or sent to the robot controller. Task specifications may appear in

various forms ranging from a pair of initial and goal states to an explicit
sequence of subtasks. If only a goal is given, the task planner would need

substantial domain knowledge in order to generate sequence of subtasks. An

intermediate step might be to let task planner check task specifications and

provide recommendations. Task planning can be carried out in two steps: task

synthesis and robot motion synthesis. At the top-level is a task manager

responsible for the selection and coordination of task skeletons, procedures

to perform specific subtasks. It is also plausible to use a robot-level

programming language between task synthesis and robot motion synthesis, i.e.,

task specification (high level) --> robot program (medium level) --> robot

motion (low level). The robot-level programming should be accessible by the
user.

Robot motion synthesis depends largely on type of applications. For

example, assembly operations require compliant and guarded motion, while arc

welding and spray painting operations require accurate motion and trajectory
control. Object and world model is indispensable in robot motion synthesis. We

attach homogeneous transform to symbolic spatial relation to express quantita-

tive relation among objects and robot. The object and world model changes
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dynamically as task goes on. An efficient and elegant way to update the model
is by message sending in object-oriented paradigm. Collision avoidance is
another important problem in robot motion planning which will be discussed in
later sections.

We use a typical spray-painting robot to illustrate task synthesis and
robot motion synthesis. Assume that five faces of a large rectangular block
are to be painted except the face attached to a fixture which rotates the
block.

A. User Interface

The user interface elicits information that is required from the user in
order to accomplish the task. Typically, TARPS requires to know about the
environment and objects. The user supplies data to completely define the
object size, shape and location through the object representation primitives.
This helps TARPS to configure the object and environment model. Besides infor-
mation required to define the environment, the user also supplies some
parameters that are required for the performance, monitoring and analysis of
the task.

B. Task Synthesis

The task synthesizer acts as a scheduler and utilizes the relevant plan
information for the performance of the task. The input to the task synthesizer
comprises user-specified parameters defining the environment and the task. A
given task, e.g., paint the block, is decomposed into a sequence of subtasks
using heuristic planning rules, which are primarily concerned with the selec-
tion of task parameters to obtain a satisfactory task performance. One such
heuristic rule is that "adjacent faces of an object are painted in sequence".
The selection of adjacent faces, however, further depends on the constraints
on the mobility of the work-piece and the reachability or work-envelope of the
robot. After decomposition, each subtask is considered independently and
manipulator paths are generated for each subtask in accordance with subtask
constraints. An example of such a plan decomposition sequence for painting the
block is: (I) paint face I, (2) rotate block (+90), (3) paint face 2, (4)
rotate block (+90), T5) paint face_3, (6) rotate block (+90), (7) paint
face 4, (8) paint face 5.

C. PATH GENERATION

Generally speaking, for painting robot there are two types of motion:
free motion and paint motion. Free motion comprises those motions between home
position and initial positions of subtasks. Collision avoidance is usually tile
only concern in free motion. Paint motion, on the other hand, requires more
accurate trajectory control. For example, the spray gun must always be perpen-
dicular to the surface to be painted, and the distance between spray gun and
the surface must remain constant. Once task parameters such as initial con-
figuration, etc. have been determined, the task skeletons are responsible for
calculating the path of the manipulator that can satisfactorily accomplish the
task.
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1. Motion P]anning

Once the manipulator is at the initial position it is ready to start

performance of the task. The path followed by the end-effector depends on the

"paint-patterns." A paint pattern is the path that a spray gun attached to the

end-effecter moves to deposit paint on the work-piece. Such a pattern depends

on various parameters like shape of the work-piece, material properties of the

paint, etc. Until now, generation of a painting pattern has been mostly ex-

perimental by using a guiding system. Such a trial and error approach is often

time consuming and inefficient. We felt it necessary to develop an algorithm

for the painting process. Algorithms for painting planar surface have been

developed; those for painting curved surfaces can use polyhedral approximation

and are under development.

Once a particular face of the work-piece has been painted, there is

relative motion between the robot and the work-piece in order to position the

manipulator at a suitable initial position to paint the next face as scheduled

by the task planner. Fig. 2 shows the robot path from home position to the

initial position for painting face 1. The inter-subtask motion has to take

into account the following two factors: 1) Avoidance of collision during the

manipulator and/or work-piece motion and 2) movement of the work-piece between

subtasks to provide an easy access for the manipulator to paint the relevant
face subject to the constraints on the freedom of work-piece to move in the

workplace. Inverse kinemetics and collision detection are computed in this

phase.

2. Collision Avoidance

There have been many studies relevant to the planning of a collision-free

path. Two approaches have been used most often. One approach is "hypothesize-

and-test" method which focused on algorithms for detecting collision among

solids. Another approach consists of explicitly representing the set of those

robot configurations which are collision-free [6],[7]. However, an efficient

algorithm for computing a collision-free path for general robots is still not
available.

We employ two strategies to plan collision-free paths in TARPS. The first

one is using an heuristic method to plan a collision-free path which is

similar to the second approach mentioned above. The other uses a collision

detector to detect a possible collision during simulation. Whether the colli-

sion detector need to be executed can be determined by the high level task

manager or by the user. Since two different motions are used here, we

developed different algorithms for free and paint motion. In free motion we

need to make sure that the end effector is in the safe space. In paint motion

we consider other links since end effector is always some distance away from

the workpiece. In inverse kinemetics computation, usually multiple solutions
are obtainable. In such case we can select a collision-free solution. If none

of them is collision free, then a different path must be generated.

IV. SIMULATION AND GRAPHICS

To evaluate and ensure good performance of the robot task planning we

need to have the capability of analyzing the kinematics and dynamics of the

robot manipulator. This also calls for the capability of presenting actual
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robot and workpiece motion graphically. The software used for this purpose

must be extensible to encompass special requirements, e.g., nonlinear force

and torque calculations, in the form of user-defined functions or subroutines.

The Automatic Dynamic Analyses of Mechanical Systems (ADAMS) was selected as

our simulation tool which provides us with such facilities. The actual equa-

tions governing the manipulator kinematics and dynamics can be programmed in

ADAMS which can then be interfaced and run as a process when required by the

LISP-based planner. The results of the simulation can be analyzed by the user

or planning program to decide on the actions to take.

V, CONCLUSION

In this paper we have presented a prototype of Task-Level Robot Program-

ming and Simulation System. The key issues addressed here are world modeling,

object representation and collision-free task planning. We adopted a surface-

based object representation for the reasons that it is ideal for sensor-based

robot control and is easily accessible from CAD database. Task planning is

based on a hierarchical approach while collision problem is taken into con-

sideration during path synthesis. When sensor systems are incorporated, parts

localization techniques can be applied to obtain actual position and orienta-

tion of the objects. It is our belief that task-level programming will be

useful in a wide variety of applications, and we are also investigating the

parallel hardware architecture for task-level systems.
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ABSTRACT

Flexible arms offer a great degree of flexibility

in maneuvering in space environment. We have studied

the problem a space station based Flexible Arm Robot

to transport an astronaut for EVA (extra vehicular

activity). In particular we developed the inverse
kinematic solutions of the multilink structure. Our

technique is goal-driven and can support decision

making for configuration selection as required for

stability and obstacle avoidance. Details of this

technique and results will be presented.
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ABSTRACT

Intelligent path planning methods are of utmost

importance for robots operating in space. In

unexpected situations, reliable solutions must be

generated. Trial and error may not suffice, nor does

active human involvement. An autonomous robot path

planning method is not yet availabe. Obstacles are,

if at all, detected but not avoided.

We propose a method to generate obstacle free

trajectories for both mobile robots and linked robots.

The approach generates shortest paths in a

configuration space. The metric in the configuration

space can be adjusted to obtain a tradeoff between

safety and velocity by imposing extra costs (=

distance) on paths near obstacles.

A configuration space is a space in which each

point corresponds to a unique position and shape of

the robot in real space. The number of dimensions of

the configuration space equals the degrees of freedom

of the robot. E.g., a mobile vacuum cleaner has 3

degrees of freedom (2 translational and 1 rotational),

an industrial manipulator with 6 rotational joints has

6 degrees of freedom. A survey on configuration

spaces was presented by Lozano-Perez in [i]. A point

in configuration space may be allowed or forbidden;

forbidden if the robot in real space would collide

with an obstacle or with itself, else allowed.

In [2] it was suggested to quantize the

configuration space and to obtain a shortest path

using a constrained distance transformation. Distance

waves were propagated until convergence occured, a

rather time-consuming procedure.

We now propose a standard heuristic search method

in the configuration space: the A*-algorithm [3].

From a given start point, costs are propagated unitl

the goal-point is reached. A suitable heuristic is

the lenght of the shortest path to the goal, assumed

that obstacles are not present.

Metrics which can be used are approximations of

the euclidean metric (like the chamfer metric, see

Borgerfors [4]) or non-homogeneous metrics. We
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propose to use the latter, to be built of chamfer

distances, multiplied by a factor dependent on the

distance to the obstacles. The distances to the

obstacles can be calcualted by a standard distance

transformation. The minimum distance in the real

space from the robot to the obstacles is decisive for

the metric in the configuration space.

In the surroundings of obstacles local distances

are larger. The robot will avoid these areas whenever

possible. During execution of the path the robot is

given a fixed velocity in the configuration space.

The local metric provides a slow speed near obstacles

and a high speed away from obstacles. If the goal and

start are defined as "obstacles" in the determination

of the metric an acceleration from the start and a

deceleration towards the goal is obtained

simultaneously.

Note that our approach differs from the penalty

approach [5]. in the penalty approach the finding of

a path can notbe guaranteed, because only local

information is used. With the A*-algorithm however,

the shortest and safest path is always found.
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Abstract

This paper describes a multiprocessing architecture environment for performing real-

time monitoring and analysis using knowledge-based problem solving techniques. To han-

dle asynchronous inputs and perform in real time, the system consists of three or more

separate processes which run concurrently on one or more processors and communicate

via a message passing scheme. The Data Management Process gathers, compresses, scales

and sends the incoming telemetry data to other tasks. The Inference Process consists of

a proprietary high performance inference engine that runs at 1000 rules per second using

telemetry data to perform a real-time analysis on the state and health of the Space Tele-

scope. The I/O Process receives telemetry monitors from the Data Management Process

and status messages from the Inference Process, updates its graphical displays in real time,

and acts as the interface to the console operator. The operator sees a hierarchy of displays

which can be traversed using a mouse, and on which the user can display graphs of the

monitors. The multiprocessing architecture has been interfaced to a simulator and is able

to process the incoming telemetry in "real-time" (i.e., several hundred telemetry monitors

per second). In this paper we will also describe why commercial knowledge-based building

tools are not well suited for real-time domains, thus forcing us to develop our own propri-

etary shell. The system has been applied to the real-time monitoring of telemetry data

from the NASA Hubble Space Telescope (HST) and the application will be described in

another paper at this conference.
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Introduction

As the application of knowledge-based systems evolves from an art to an engineering

discipline, we can expect more challenging applications to be addressed. Some of the most

challenging and interesting environments are found in real-time domains.

A knowledge-based system operating in a real-time situation (e.g., satellite telemetry

monitoring) will typically need to respond to a changing task environment involving an

asynchronous flow of events and dynamically changing requirements with limitations on

time, hardware, and other resources. A flexible software architecture is required to provide

the necessary reasoning on rapidly changing data within strict time requirements while

accommodating temporal reasoning, non-monotonicity, interrupt handling, and methods

for handling noisy input data.

The Problem

Like other existing satellites, the NASA Hubble Space Telescope (HST) has not been de-

signed to to be an autonomous spacecraft. Its engineering telemetry will be monitored

for vehicle health and safety 24 hours a day by three shifts of operators in the ST Opera-

tions Control Center (STOCC) at the NASA/Ooddard Space Flight Center in Greenbelt,

Maryland.

Six operator workstations (four to monitor the major subsystems and two for command

and supervision) will be used to monitor the incoming telemetry data. Each workstation

consists of two color CRTs which display numeric values, updated in real time.

• On one CRT the operator can bring up a page of formatted telemetry data (where

a page consists of about 50 different monitor mnemonics and its associated value)

or a page consisting of a chronological history of events that have occurred (e.g., a

monitor out of limits)

• The other CRT is a slave to any other console and can be used to display what is

being shown at another workstation

For the HST there are 4,690 different telemetry monitors in 11 different formats avail-

able for interpretation. In normal operating mode, each monitor is sampled at least once

every two minutes, with some being sampled many times during that interval. The telem-

etry format may be changed manually by ground operations or autonomously by the HST

under certain situations. The telemetry data is subject to a variety of problems including

loss of signal and noise in the transmission channel.

As in any large system, the job of the console operator is difficult because of the

complexity of the HST and because it is hard to determine the exact state of the satellite

at any time due to the massive amounts of data arriving at such short intervals and the

ever present possibility of non-nominal behavior.
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Why Commercial Tools are Inadequate for Real-Time

Monitoring

Real-time domains present complex, dynamic problems because of their dependence on

the time factor. A real-time expert system must satisfy demands that do not exist in con-

ventional domains. Current shells are not generally appropriate for real-time applications

for the following reasons:

1. The shells are not fast enough

2. The shells have few or no capabilities for temporal reasoning

3. The shells are difficult to integrate in an e_icient manner with conventional software

4. The shells have few or no facilities for focusing attention on important events

5. The shells offer no integration with a real-time clock

6. The shells have no facilities for handling asynchronous inputs

7. The shells have no way of handling software/hardware interrupts

8. The shells cannot efficiently take inputs from external stimuli other than a human

9. The shells cannot guarantee response times

10. The shells are not built to run continuously

We next describe a monitoring system called L'STAR (for Lockheed Satellite Telem-

etry Analysis in Real Time) being built to aid the HST console operator in performing

the real-time monitoring and analysis of telemetry data from the HST. L'STAR runs on a

DEC VAXStation II/GPX running under VMS and uses data produced by the BASS Tel-

emetry System at the HST Hardware/Software Integration Facility (HSIF) in Sunnyvale,

California.

"3

Solution Method

Three separate processes are used for the real-time analysis of rapidly changing satellite

telemetry data. Each of the processes operates independently and communicates informa-

tion via message passing. (NOTE: We use the terms process and task interchangeably in

this paper.) The different processes are shown in Figure 1:

• INFERENCE PROCESS -- used to analyze the dynamic data by means of forward

or backward chaining rules

• DATA MANAGEMENT PROCESS -- used to gather, scale and compress the in-

coming telemetry data
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• I/O PROCESS -- used to provide an interface (including real-time graphics) to the

operator

Having three independent tasks allows us to distribute the system across different proces-

sors. When all three tasks are operating on one processor, the timesharing facilities of the

operating system take care of scheduling when each is run.

If all the tasks were done in one process, i.e. sequentially, the Inference Process could

not be reasoning with existing data while the Data Management Process was getting new

data, or while the I/O Process was performing screen output. The main purpose of having

separate tasks was to give the Inference Process complete freedom from input/output

worries and let its limiting factor be the processing power of the CPU on which it is

resident.

Mailboxes are used for the message passing between tasks. They are used as fast, one-

way_ in-memory channels for communication of data. Using this mechanism, the Inference

Process is only slowed by having to read or write to the mailbox.

A typical scenario follows: The Inference Process examines its knowledge base and sends

a set of messages to the Data Management Process indicating which telemetry monitors it

needs to perform its analysis. It also sends messages containing other information the Data

Management Process needs to know about each telemetry monitor such as the sampling

rate_ whether it should be smoothed_ the scaling factor, alternate names, and to which

telemetry set it belongs.

Incoming telemetry data streams are captured from the flight hardware and after initial

preprocessing of the raw data by ground computers are fed to the Data Management

Process. After some scaling and data compression, this process sends the data of interest to

the Inference and I/O processes. The Inference Process can ascertain, using its knowledge

base, if the data correspond to nominal vehicle behavior. The I/O Process consists of

a data flow diagram of the flight system software and magnitude vs. time plots of the

telemetry data. The plots, which are strip charts updated in real-time using data from

the Data Management Process, can appear by using mouse clicks when the cursor is over

appropriate parts of the diagram. Should the HST change state or non-nominal behavior

be detected, messages will be sent from the Inference Process to the I/O Process and

subsequently displayed.

The knowledge in this real-time monitoring system is contained within the rules and

frames which make up the knowledge base. The knowledge base, used primarily by the

Inference Process, contains the critical telemetry items to be monitored and rules to infer

the current state and health of the HST. Of the over 4,000 different telemetry monitors, only

a small number (about 10%) are used by the operators to determine spacecraft behavior.

If, however, non-nominal behavior is detected, other telemetry monitors might be used to

diagnose the problem. This would be done by having a rule fire which causes a message to

be sent from the Inference Process to the Data Management Process, indicating which new

set of telemetry monitors it needs to know about. Rules can also send messages changing

the sampling rate of telemetry at which it is already looking.
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Discussion

As more and more complex vehicles are put into orbit, it becomes essential that sophisti-

cated methods for evaluating the health of and diagnosing problems within these vehicles

be developed. Real-time knowledge-based systems offer promise as an excellent means

of dispersing such information. During development, testing is an important part of the

cycle. In doing such testing, system designers have to be able to monitor and diagnose

the telemetry streams. This kind of expertise should not have to be independently learned

by the vehicle operators after launch, when the developers are out of the picture. Thus,

for a system such as the one described in this paper, having the expertise saved for the

operations aspect is an invaluable step.
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Independently designed expert systems that operate in common

environment will almost certainly share some resources and data.

They will also be connected in a network of interdependencies,

each one reliant upon the others. Measures must be taken,

therefore, to insure that these expert systems can communicate
with one another.

This paper addresses the problem of expert systems relations

as they pertain to space applications. First, these

systems will be categorized and the relationships between them

will be analysed. Then, an expert systems cooperation paradigm

will be proposed. This paradigm will address various types of

communication and coordination issues in an attempt to create a

general model applicable in a variety of situations.

Introduction: The Common 9oal

expect to find on
complicated as the

interact, however,
successful mission.

what they do best,

possible.

The interactions between expert systems that one might
a modern spacecraft are likely to be as

systems themselves. These systems must

in order to achieve their common goal of a

Like any team, these systems should each do

while assisting their teammates as much as

Current set of tasks: O

Current resources: []

0 1 2

TIME

fig. 1

n

Mission Model

A simple model of a mission is depicted in fig. 1. The terms

"task" and "resource" are used in the most general sense. Example

tasks include life support systems, experiments, and fixing a
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broken camera. Example resources Include oxygen, electrlcal

power, and tools. The common goal of the expert systems, then, is

to cooperate in order to insure that at any given point in time

the spacecraft's available resources either meet or exceed the

requirements of the current set of tasks.

The _xpert systems Coope_ation paradi_a

Ten categories of expert systems are listed in [1]. This
list can be condensed into four classes which one would be likely

to find on a spacecraft:

Diagnosis --

Scheduling --

Repair

Control

Monitoring and interpreting sensory data.

Posslbly making predictions based on that

data, ultimately trying to identify any

problems that might affect the resource

pool.
Developing a plan whereby all tasks are

completed taking into consideration
resource constraints.

Helping provide for resource repair either

directly or in the form of advice.

Controlling mission tasks in accordance
with the schedule.

Given these four classes, the author proposes a paradigm for

expert systems cooperation depicted in fig. 2. The "Physical

System" may be the spacecraft as a whole or any subsystem
therein. The paradigm is, therefore, meant to be valid in many

different applications of varying scope. It is also posslble to

ignore any components of the paradigm that are not needed. If,
for example, some subsystem does not have a repair expert system,
that module and its associated data (the Symptoms and Repair

Reports) can be ignored.
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The paradigm utilizes a blackboard architecture, as

described in [2], to facilltate expert systems cooperation.

According to this scheme, each system monitors the blackboard,

looklng for something it can contribute. For example, when a

Symptoms Report is written by the Diagnosis system, the Repair

system will become active. Conversely, whenever the Symptoms

Report is empty, the Repair module is inactive because there is

nothing it can contribute. It is important to note that all

communication between expert systems is through the blackboard.

In a typical case, considering the complete paradigm, both

the Diagnosis and Control modules are active at the outset of the

mission. At this point all the data objects except the Optimized

Schedule are empty. When the Diagnosis system observes or

predicts some abnormal change in the resource pool, it writes a

Damage Report for the Scheduler and a Symptoms Report for the

Repair system.

Problem

Optimized
Schedule

Rescheduling

Complete

Unoptimized
Schedule

Optimized
Schedule

fig. 3 Unoptimized Interim Schedule

At this point there is a problem, however. The Scheduler

must revise the optimized schedule, taking into consideration the

resource changes, but what about the tasks that must continue

during the rescheduling process? Moreover, the Scheduler cannot

operate without a definite start time and a definite set of tasks

to consider. Clearly, there must be an Unoptimized Interim
Schedule for use in the time between the problem diagnosis and

rescheduling completion (see fig. 3). The time of this interim

should be an upperbound of the runtime of the Scheduler. The

Unoptimized Interim Schedule should include as many tasks of the

highest priority as can be accommodated. The Control system,

then, will use the Unoptimized Interim Schedule whenever one

exists. This process is the same when the Repair system, via a

Repair Report, signals the Scheduler that the Resource problem
has been fixed.
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Conclusions

This paradigm will handle multiple resource faults, but
includes no methodology for the isolation of or recovery from

catastrophic failures• This sort of problem should be handled by
the individual expert systems, and is independent of the paradigm

in question. The paradigm will, however, help system designers
plan the input to and output from their systems. It will also,

hopefully, provide a useful framework for the development of the
system or subsystem as a whole•
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Abstract. We propose a model of problem solving by dynamically distribute the
knowledge sources to several processors in a controlled manner. Example is given, the
features of this approach are also summarized.

Introduction

Recently, intelligent distributed systems have drawn much attention. Researches in
distributed artificial intelligence (DAI) have focused on cooperative solution of problems
by a decentralized and loosely coupled collection of knowledge sources (KSs), each
embodied in a distinct processor node [ 18]. Most previous works in DAI deal with distri-
buted problem solving techniques, for instance, the investigation of phases of problem
decomposition, sub-problem distribution, sub-problem solution, and answer synthesis
[16]. In this paper we investigate distributed computing in intelligent systems from a dif-
ferent perspective. From the viewpoint that problem solving can be viewed as intelligent
knowledge retrieval, we propose the use of distributed knowledge sources in intelligent
systems. Owing to space limitation, no technical detail is given in this paper.

A model that integrates knowledge

We start from a cognitive model for knowledge retrieval reported earlier [2,3].
Information chunks or pieces (will be referred to as documents) are acquired, mapped
into internal structure and integrated into an overall knowledge base, while the. docu-
ments (which form the sources of the knowledge) are still identifiable. Notice that this
model is very general. The documents may be either English-like texts or numerical data
sets, and may have quite heterogeneous structures. The mapping mechanism may also
vary a lot. For instance, it may be a natural language understander to "understand" the
natural language-like input or a kind of data analyzer to analyze the input numerical data.
These internal structures (i.e., the result of the mapping) are referred to as knowledge,
integrated to an overall knowledge base, and can be retrieved. This kind point of view is
consistent with the view that knowledge is condensed information [ 15]. After knowledge
is retrieved, they will be presented in a easily readable form (e.g., by reconstructing the
documents) to the user.

Problem solving and knowledge retrieval

The central idea of this report is to relate problem solving to knowledge retrieval.
This is a topic which needs further investigation, although it is not new. In fact, the rela-
tionship between information retrieval and question-answering system which has been
discussed by many authors is basically also true for the relationship between knowledge
retrieval and problem solving. According to [8], systems having broad, possibly interre-
lated data bases whose answer-computation mechanisms is not capable of great depth
tend to be called question-answering systems while systems having less-interrelated data
bases whose answer-computation mechanism is capable of more depth tend to be called
problem-solving systems. Based on this understanding, if a question-answering system is
a kind of information retrieval system that understands the texts, it is reasonable to say
that a problem-solving system may be realized as a kind of knowledge retrieval system
which needs in-depth understanding and handling of the knowledge. Procedurally, a
problem solving system utilizes the knowledge in a manner which results in a sequence
of retrieval steps. The objective of the problem solving system is to make decisions to
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identify and integrate certain parts of knowledge for certain goal(s) and actually use the
related knowledge in an intelligent way. The tasks of the decisions are to make a
coherent final plan or to integrate various partial solutions, to name a few.

The use of distributed knowledge sources

What is more, frequently it is desirable to retrieve knowledge from more than one

knowledge source (KS). For instance, operational system exists in space science which is
able to combine evidence from multiple sources [1]. But along with this direction, much
work is still ahead. This particularly includes to develop a useful control mechanism to
make this scheme work systematically. The rationale of using our model for this purpose
can be justified as below. It has been recognized that sufficiency of knowledge is one of
the most important requirements in generating some sequence of partial interpretations
that culminates in correct complete interpretation [11,12]. In case of lacking the proper
tool of handling the entire knowledge at once, we may try to distribute the entire

knowledge into several smaller knowledge sources, each of them can be handled by an
independent processor. The various knowledge sources serve various documents in our
model; the task of intelligent retrieval is to capture the underlying meaning of these
knowledge sources handled by the processors. Each knowledge source provides part of
the knowledge needed to solve the problem; therefore, an additional task involved in the
problem solving process is to control these processors and to force convergence of the
solution, and an overall solution based on all the partial solutions can thus be finally
obtained.

By "intelligent retrieval" we mean that (1) the problem solver deals with the "inter-
nal form" (or meaning) of the knowledge sources, not necessarily its original form; (2)
the problem solver is able to use its rule base to handle the partial or conflicting informa-
tion obtained from different knowledge sources. Therefore, even though each node has
only a limited view of the input data, the problem solver is able to integrate the partial

solutions and to convergent to a final solution.

The architecture of our problem solver is explained in Fig. 1. The conceptual
memory serves a role of index of the knowledge sources; it is used in integration
knowledge from different knowledge sources as well as retrieval of these knowledge
sources. The rule base provides rules for integration of knowledge sources.

KS KS KS

' ,map ing mapping mapping

KB KB KB

\ ! [i/OVERALL KB

_ i

(CONTROL of distributing knowledge)

Fig. 1

The fundamental idea is going to be illustrated as below. Previously we described in
model which concerns the problem of generating a plan to access heterogeneous numeri-
cal database dealing with observational data. In the following we consider another appli-
cation, which concerns qualitative reasoning on partial results obtained from distributed
quantitative processors (part of this work was reported in [5]). This second application,
which handles the conflicting information obtained from partial solutions, is more interst-
ing.

This approach utilizes the original model in a "reversed" manner. Traditionally, in a
knowledge-based system, knowledge is acquired first, and serves as the environment of
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solving the problems. In our approach, input data are treated as knowledge source, and,
consequently, solving this specific problem means to understand the data, i.e., to intelli-
gently retrieve the knowledge implied by these data. This also means to distribute data
(instead of problem) and assign them as knowledge sources to processors in a controlled
manner. The function of the processors is to process (or map) them into internal form (or
"knowledge").

Our approach is somewhat related to the work of distributed Hearsay-II [11,12], in
which a distributed approach of problem solving has been investigated. An interpretation
system accepts a set of signals from some environment. Two major questions are how to
interpret the data and how to decompose a given interpretation technique for distribution.
It is necessary to operate on local databases that are incomplete and possibly inconsistent
and to integrate incomplete partial solutions to construct an overall solution. The elimina-
tion of explicit synchronization has increased parallelism. Our approach shares some
common features with these previous approaches, the difference is only at what is to be
decomposed or distributed.

To illustrate, let us consider the solving of the following problem. This problem
solver deals with periodicaUy collected observational numerical data which involve a lot

of variables. Only one of the variables is considered as system function (dependent vari-
able), the others are treated as independent variables (although they may be somewhat
interrelated). The problem is to find, among a large set of independent variables, the
most important variables which effect the system function. Algorithms exist to deal with
a limited amount of variables, and they can be actually carried out by existing software
(for instance, the technique of utilizing entropy data analysis introduced by [9]). Since
each time only a limited set of variables can be considered, each time we can only obtain
a partial solution. The type of problem discussed in this paper is similar to the data
compression schemes for inertial navigation systems discussed in [13], in which frequent
data are collected while the computation capability is limited, but the techniqued used
here is entirely different.

For this particular problem, our scheme of solving problem through retrieval of dis-
tributed knowledge sources can be explained as follows. Data are decomposed into
several subsets, each is able to be handled by a single processor. The part of data distri-
buted to a processor (in our current example, in addition to the dependent variable, each
decomposed data set includes several independent variables), is viewed as knowledge
source associated with it. (The knowledge sources are not necessarily disjoint). Each
process can treat its own knowledge source either as a single unit or a set of knowledge
sources at lower levels. All these processors can work on its own knowledge source

simultaneously and find the most, import,__,t variables based on this knowledge source. As
the result of this processing (or mapping ) is a set of rules which reflect the knowledge
implied by this particular set of data. Each assumes its knowledge source is the only
existing knowledge to the ,system, and claims the variables it found are the dominant

ones to the whole system. Under this architecture, the type of problem to be solved can
be restated as follows: given a set of data which are distributed to the KSs (with arbitrary
number), how to determine the limited number (say, 4) of dominant variables from the
results of the competing processors?

Basically, our problem solver solves this problem in the following manner. A set of
rules maintained in the central node is used to integrate the intermediate results obtained
from the processors. Integration includes to handle the conflicting information and draw
similarities among the partial solutions provided by the independent processors. A few
new sets of data which includes reduced number of variables are thus created; they are
treated as knowledge sources and are then assigned to several processors. The number of
variables remained in the knowledge sources are thus reduced and finally they are con-

vergent to the solution. There is a centralized control over the knowledge source the pro-
cessor possesses.
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The problem can be solved by following those steps:

1. Decompose the input data into several subsets, each consists several independent vari-
ables and the dependent variable. These subsets form the distributed knowledge sources,
each of them is associated with processor(s) which is(are) able to process the associated

knowledge source in some way. In addition to this kind of decomposition, a set of rules
also exists so that these partial solutions may be integrated later by these rules.

2. Retrieve knowledge processed by processors, use rules to corporate information and
get rid of confl cfing information.

3. Form reduced knowledge sources, and assign back to some processing nodes.

4. Repeat steps 1-3 until a convergent solution set is obtained.

Notice that in step 1 all the processors related to knowledge sources are not neces-
sarily homogeneous. But to simplify the discussion, in the following example, we will
assume all the processors take the same form. Notice also that since the number of vari-
ables to be considered at each iteration is at least decreased by one, our scheme can

guarantee the convergence of the solution, although this does not necessarily means
optimal at all (see the conclusion part of this paper).

To illustrate, suppose we have the original data including variables A, B, C, D, E, F
(Fig. 2a), but processor is able to handle up to four variables at each time. Suppose based
on domain related knowledge, it is able to organize knowledge sources in a way shown in
Fig. 2b. After processing these knowledge sources parallelly, it is possible to identify the
partial solutions obtained from these knowledge sources, and rules may be used to form
"better" knowledge sources which only includes variables A, B, C, or A, B, E. Therefore
only variable combination A, B, C, E needs to be considered. The size of the solution set
is thus reduced. The final solution of the original problem can be found by processing
this data set.

A B C D E F

(a)

A B C D ... A B E F

A B C E

(c)

(b)

Fig. 2

Features and comparisons with other works

Usually, in distributed problem solving, a single task is envisioned for the system,
while distributed processing systems synthesize a network which is able to carry out a
number of widely disparate tasks. Since our system is aimed to solve one single task at
one time, it is close to distributed problem solver, but the control in our system is not
decentralized. Briefly, our scheme has the following features:

(1) Deliberately distribute input data as knowledge sources rather than decompose the
task.

(2) Centralized control is only restricted at each knowledge source level.

(3) The problem is solved gradually by reducing knowledge sources, there does not exist
a separate phase of answer synthesis.

The system describcd in this paper may be referred to as distributed knowledge pro-
cessing system. Although the majority works rclatcd in distributed problem solving deal
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with knowledgesourceswhich cooperatein the sensethatno one of them hassufficient
information to solve theentire problem[17], our schemeis the only onewhich controls
thedistributionof theknowledgesources(insteadof theproblems)in adynamicmanner.
This is thefundamentaldifferencebetweenourapproachandtheothers.

A systemslevel approachto distributedprocessingwassuggestedin [14], in which
a scalable,dynamically reconfigurablearchitecturewas claimed to be necessary.This
meansa computerwith no architecturallyimposedperformancelimits. If this approachis
to find a hardwaresolution, thenourpurposeis to find a softwaresolution for a similar
problem.

Integratingknowledgesourcesfor computer"understanding"taskswasdiscussedby
[6]. Our schemeis similar to that schemewhich is a systemof cooperatingexpertsrun-
ning in separateimages. But oursis aimedto bea generalknowledgeintegrationscheme
extendedfrom the existing IR model, and is not restrictedto text (written in English)
understanding.Therefore,in this sense,oursis moregeneral.
Concluding remarks

The method introducedin this paperdoesnot necessarilygeneratethe "optimal"
solution;but, it doesprovide anacceptableone.We havesuccessfullyusedthemethod
describedin this paperto find theeffect of somemostimportantvariablesto thesystem
function [5]. Moreover, since the methodintroducedin this paper involves symbolic
(qualitative)reasoningattachedto numericalprocessors,it maybeviewedasanexample
of couplingsymbolic andnumericalcomputing[10], which hasbeenrecentlymoreand
morediscussedin spacescienceaswell asmanyotherresearchfields.
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Abstract

This paper explores the concept of using Parallel Distributed Processing (PDP) to en-

hance automated experiment monitoring and control. Recent VLSI advances have made

such applications an achievable goal. The PDP machine has demonstrated the ability to

automatically organize stored information, handle unfamiliar and contradictory input data

and perform the actions necessary. The PDP machine has demonstrated that it can per-

form inference and "knowledge operations" with greater speed and flexibility and at lower

cost than traditional architectures. Current automated process and control algorithms use

knowledge and inference mechanisms to solve problems which would ordinarily require the

expertise of the best human practitioners. In applications in which the rule set governing an

expert system's decisions is difficult to formulate, PDP can be used to extract rules by as-

sociating the information an expert receives with the actions taken. There are many

potential applications for very large scale hardware parallelism in the execution of space

based process monitor and control systems.

Introduction

The practical possibilities of large scale parallel machines have been significantly en-

hanced by recent technological advances in VI_SI research and production. Relatively low

cost and easy access to VLSI hardware has enabled researchers to more closely examine

parallel processing problems in general, and the application of neural nets to real world

problems. The application of knowledge based systems to on-line, real-time environments

such as automated experiment monitoring and control typically demands large complex sys-

tems reasoning. Control of these experiment systems stresses the current space based
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computer environments well beyond current technology. Size, reliability, and response

time constraints of the space environment quickly overload conventional von-Neumann

machine knowledge applications. However, the fine grained parallelism made possible by

PDP technology has provided an alternative route to space based process monitor and con-
trol.

PDP networks are a concept of knowledge representation that consists of a number of
processing elements interconnected in a weighted, user-specified fashion. The interconnec-

tion weights between the processor nodes are analogous to the memory of a conventional

system. Each processing element calculates an output value based on the weighted sum of

its inputs. A training rule is used to correlate the input data with the output or desired out-
put (specified by an instructive agent) and adjust the interconnection weights. In this way

the network is able to learn patterns or imitate rules of behavior. It is this ability to define

and control decision making that would make this sort of system well suited to support

space based processing problems. The division of the processing demands among proces-

sors makes it possible to achieve linear performance improvements for space based

processing applications. This paper will explore PDP network techniques in the application
of massively parallel primitive processors to achieve very high speed, fault tolerant, low cost

support for the types of problems associated with controlling experiments in a space based
environment.

Space Based PDP Architecture

PDP network technology is a concept of computational processing based upon highly

interconnected low level processing units. PDP technology seeks to develop and enhance

processing capabilities in areas such as real-time high-performance pattern recognition,

knowledge processing for inexact knowledge domains, and fast, precise control of VLSI

simulation. The aims of this technology are, therefore, clearly related to those of Artificial

Intelligence (AI). Over 30 years of research has provided broad processing requirements

for pattern recognition, knowledge processing, and simulation of processes. PDP machine

research has been directed toward finding solutions to these difficult computing problems.

The PDP architecture is the formal specification of a particular network or bulk sys-
tem configuration (i.e., the equations of the dynamical system that defines the PDP). This

architecture is analogous to a mathematical algorithm or logical procedure being coded and
run on a wide variety of computer hardware. The word implementation is reserved for use

in describing the engineering process of developing an appropriate PDP architecture and

selecting suitable implementation hardware for the specific application.
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The PDP conceptual processing abilities are based upon an array of highly intercon-

nected Processing Units (PU)[1,3]. Figure 1 shows a schematic diagram of a PDP network

and an individual PU. The network is make up of input units, hidden units, and output

units. The hidden units are used to extract progressively more complex features from the

input units. This allows more complex tasks to be learned. Note that each PU receives

several input signals and has a single output that fans out as input signals to other PUs.

Each PU assigns a weight to each input they receive. The sum of the weighted signals deter-

mine whether a receiving PU will itself output a signal. Thus this process continues through

the PDP machine. The processing cascades through many iterations and the output could

be a binary answer to a question or a complicated signal to be transmitted across an exter-

nal interface. The weights are determined by tuning the system until it consistently

produces the right output based upon the system inputs. A typical processing element
operation might be:

I inputs J._ Interconnection I_,_ TransferWeights Function

t l=
I

The PDP adjusts itself by way of feedback control systems that combine stimuli and

feedback from the responses to adjust the weights so as to get increasingly correct respon-

ses. It is these adaptable, programmable connections that makes the PDP machine special.

The PDP machine was initiated in the belief that coupling parallel processing and artificial

intelligence could accelerate the rate of progress toward machines that could "learn" and

make predictable, weighted decisions within the confines of their knowledge base. The

PDP machine encodes knowledge in the connection of its processing units. Each set of con-

nections represents a pattern of values for a few features. Together the features describe

environmental states, that is, values that occur in the system's environment. The strengths

of the connections encode the frequencies with which each of the different patterns occur

in the environment. Thus, the interconnections are used to represent events in the environ-

ment. The design goal of a PDP machine for a space based environment should be guided
by the following goals:

° Effective use of massively parallel processing.

° Flexibility of interaction with different sensors, actuators, and interfaces.

• Distributed parallel decision-making capabilities.

• Flexibility and ease of expansion of the system capabilities.

• Graceful integration of specific experiment control plans.
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FIGURE 1. Schmatlc diagram of a PDP Network

A key approach in the PDP architecture is the use of an adaptive filter. The adaptive

filter can accept a real-world analog input and compare it to a stored pattern. The stored

pattern represents the desired input level which can then be modified as necessary so that

echo-free signals can be produced the correct results. A more abstract argument driving

the design of the PDP network is machine efficiency, that is, the optimal utilization of the

total computer circuitry. In the more familiar structure of a modern computer (the von

Neumann architecture) most of the computer's circuitry in the memory is not in active use

most of the time. This is very wasteful from a pure resource management standpoint. The

PDP machine addresses this problem by using many processors and memories, but does so
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on a much grander scale than most. The parallelism in the PDP machine is extremely fine-

grained; it is essentially "data-level parallelism." The fine-grain division of labor and the

high speed allows the accomplishment of tasks traditionally outside the operation capacity

of conventional systems, among which are constraint search, pattern recognition, and so

forth. Even though it fits quite neatly into the definition of an parallel processor system

design, the PDP machine goes well beyond most machines in this category in the flexibility

of its structure and its amenability to various problem types.

Command and control of typical space based experiments involves both telemetry and

status monitoring and the generation of command messages. These tasks are typically car-

ried out in conventional (sequential) computer systems. As systems and environments

become more complex, distributed systems become increasingly attractive as well as neces-

sary to achieve higher throughput for a given level of computational power and higher

overall system availability. As knowledge-based systems grow in size and scope, they push

conventional computing systems to their limits of operation. For space-based experiment

control systems, response from a conventional implementation of an expert system may not

be practical. Significant performance increases in process monitor and control systems ap-

plications could be realized through distributed processing or the use of specialized

massively parallel hardware.

Typical space systems computer operations involve monitoring and control processes

such as system initialization and shutdown and power system control. Although the perfor-

mance of tasks such as sensor monitoring, particularly exception monitoring, is often

automated, the corrective action - the reaction to anomalies - is typically done by on-board

personnel. The exponential increase in system complexity and processing speeds in dis-

tributed processing systems pose a serious problem for meaningful, effective human

interface as well as timely, effective corrective action. When these factors are coupled with

non-linear increases in costs, safety considerations, and longer mission durations, they

provide a significant incentive for improved knowledge based system processing concepts

and applications. The demands of the space based environment, that is, the real time

processing of experiment feed-back and other sensor based data, suggest the necessity for

efficient handling of data and telemetry in the event of environment degradation, or sensor

failure. The process and control system will need to respond to anomalous events that will

be both instantaneous, non-specific, and dependent upon current machine state. The space

based processing system must be effective and reliable in its response to both nominal and
anomalous events.

A PDP network implementation of an expert system as shown in Figure 2 is well suited

for the space based environment. An expert system is designed to explore and symbolically

manipulate problems. Expert systems can be distinguished from other artificial intelligence

systems in that by design they bring large amounts of knowledge to bear in problem solving.

There are two general ways to define an expert systems. One way is by problem domain or
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competency. An expert system is a computer system which uses domain-specific knowledge

as well as inference procedures to solve problems. The specific problems involved are suffi-

ciently difficult to require significant human expertise in the weighing and evaluation of

data. Restated, an expert system operates in a complex domain and is competent at the

level of a human expert.

Experiment Application

__._ El_tronicPreprocesssor

m

e-

E

v

l.U

0 0 0 0 0 0

0 0 0 0 0 0

0

3

Figure 2. Space Based PDP Expert System

Another way of defining an expert system is by its structure. An expert system consists

basically of a knowledge base and a control structure. The knowledge base contains facts

about the domain. It also employs heuristics and rules of behavior. The control structure

determines the direction of problem solving. In general, control structures provide for goal

directed problem solving (solving a problem to reach a certain goal) or data directed

problem solving (problem solving that makes use and sense of data available from the

domain environment). A related structural aspect of expert systems is a working memory in

which interim problem solving steps and other information may be temporarily stored while

they are being used in working toward a solution. This structural definition of an expert sys-

tem is clearly related to PDP networks functional capabilities.

Typical applications of expert modules are in the control and operation of sensors and

actuators, interpretation of sensory and feedback data, devising strategies to accomplish

proposed tasks and the execution of these strategies. A goal might be to operate complex
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space based experiments independent of human intervention for significant periods of time.

If this be the case, the long term space based systems goal is to define control mechanisms

that will enable integrated experiments to detect error conditions in its working environ-

ment and either perform or provide corrective actions. Such systems must be able to

interpret and integrate qualitatively different, sometimes incomplete, and sometimes con-

flicting sensory information. In other words, it must construct an internal model of the real

world environment in which the experiment will operate. A general problem-solving tech-

nique must be employed. However, specific real-time information must also be integrated

in the execution of plans to solve a given task. It must be a control system which is respon-

sible for and capable of independent control execution through parallel and coordinated

control of multiple sensors and actuators.

The system must evaluate the outputs from sensors and update the state of the experi-

ment actuators according to the rules established by the principle investigator. Various

rules are said to "fire" based on input. An example of a rule for an Earth-bound experiment

environment might be" If temperature greater than 150 degrees then power up fan". The

integrated computer system is in a constant state of sensing and updating the state of an ex-

periment. A simple experiment environment might involve 1000 such rules. Because of

memory requirements and execution speed, even this relatively small knowledge base

would involve significant overhead in a conventional von-Neumann machine and could

quickly overload the system. The PDP machine offers another method of implementation

of constraint based rules. This alternative provides the speed necessary to respond to the

space based system needs.

PDP Knowledge Acquisition Paradigm

In the preceding sections we have discussed a parallel processing architecture and its

ability to build a knowledge base - to "learn." This learning process is, of course, a complex

and controversial problem. Learning algorithms have been proposed as a way to program

massively parallel processors [1,2,3,4,5]. Experiment control system programs using ap-

propriate learning algorithms can be automatically decomposed into small sub-tasks. It is

these sub-tasks that provide an opportunity to distribute processing across parallel process-

ing units, which translates into the connections of a PDP machine.

The PDP machine assigns a weight to each input it receives; the sum of the weighted

signals determines whether a receiving PU will itself fire a pulse, which in turn triggers

other PU's. This process cascades through many iterations, and the result, is the output.

The PDP machine consist of a number of PU's interconnected in a weighted, user-specified

fashion. Each PU calculates an output value based on the weighted sum of its inputs. To

program the PDP machine, the input data is correlated with the output or desired output
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using a learning rule that will adjust the interconnection weights. In this way the machine

learns patterns or imitates rules of behavior and decision making the allows the PDP

machine to support space based processing. PDP model as presented in Figure 1 typically

consists of many simple processing units that interact using weighted connections. Each

unit has a "state" or "activity level", that is determined by the input received from other units

in the network. The threshold term can be eliminated by giving every unit an extra input

connection whose activity level is fixed. The weight on this special connection is the nega-

tive of the threshold, and it can be learned in just the same way as other weights.

The particular PDP machine architecture discussed here is a variation of the Rummel-

hart et. al. [3] multi-layer perceptron employing the generalized delta rule (GDR). The

GDR provides a method of modifying any weight in a network, based on locally available in-

formation, so as to implement a gradient descent process that searches for those weights

that minimize the error at the output units. The PDP system can learn to associate ar-

bitrary input/output pairs by use of the generalized delta rule. Using this the rule, neural

networks can learn to compute arbitrary input/output functions. The mathematics of this

learning approach can answer many questions about the weight, adjustment, and summa-

tion of the intercormection weights. It can also provide some insight into noise sensitivity,

feedback, and system layering. The GDR learning procedure is a generalization of the

delta rule procedure that works for networks which have layers of hidden units between the

input and output units. Multilayer networks can compute more complicated functions than

networks that lack hidden units. However the price that must be paid is a slower learning

process as the system explores the possible ways of using the hidden units.

The application of the generalized delta rule as presented in Figure 3 involves two

phases. First the input is presented and propagated forward through the network to com-

pute the output value for each unit. This output is then compared with the targets, resulting

in an error signal for each output unit. The second phase involves a backward pass through

the network during which the error signal is passed to each unit in the network and the ap-

propriate weight changes are made. This second, backward pass allows the recursive

computation of the error signal as indicated above. The first step is to compute the error

signal for the output units and all of the hidden units. Notice that computation performed

during the backward pass is very similar in form to the computation performed during the

forward pass (though it propagates error derivatives instead of activity levels, and it is en-

tirely linear in the error derivatives). The GDR generates a gradient descent method for

finding weights in any feed-forward network with semilinear units. The learning procedure

involves the presentation of a set of pairs of input and output patterns. The system first

uses the input vector to produce its own output vector. Then this is compared to the

desired output, or target vector. If there is no difference, no learning takes place. If any dif-

ference exists, the weights are changed to reduce the difference.
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Figure 3. PDP Learning Procedure

When weight change increments are sufficiently small, this learning procedure is

guaranteed to find the set of weights that gives the least mean squared error, qlae delta rule

essentially implements gradient descent in sum-squared error for linear activation func-

tions. The central idea of the generalized delta rule is that these derivatives can be

computed efficiently by starting with the output layer and working backwards through the

layers. The weight on each line should be changed by an amount proportional to the

product of an error signal available to the unit receiving input along that line and the output

unit sending activation along that line.

From the above learning methodology we see that the PUs in a PDP machine are

trained by the cyclic input and output of data vectors. In this way a computer operating in

the batch mode can be very effective in training the system. However there is a clear need

to provide a real-time interface with a human in order to effect more particular training [5].

The iterative process through which a PDP machine learns is not suited for human interac-
tion. Therefore there is a clear need to both enhance the man-machine interface and

develop more efficient data/response patterns in a PDP architecture.
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Conclusion

System designs based on the traditional von Neumann approach will be considerably
slower than a systems based on the PDP machine simply because of the limited bandwidth

of the memory-processor connection. These traditional systems cannot match the flexibility

in function that the software-programmable connections, which are the hallmark of the

PDP machine, allow. Networks of larger processors, the MIMD concept, can possibly out-

perform a PDP machine on computation-intensive problems; however, in

constraint-intensive applications, they suffer from the same problem as the von Neumann

designs. Traditional SIMD machines, such as systolic and pipeline machines, suffer from

the problem of requiring a particular structure to solve a problem. Again, this problem is

overcome by the flexibility of the PDP machine's communication network.

PDP machines employing fine grained parallelism consist of a number of processing

elements interconnected in a weighted, user specified fashion. The interconnection weights

act as memory for the system. Each processing element calculates an output value based on
the weighted sums of its inputs. In addition, the input data is correlated with the output (or

desired output) through use of a training rule that adjusts the interconnection weights. In

this way, the network learns patterns or imitates rules of behavior and decision making.

Process information is not obtained by passing through a normal process and control algo-

rithm, but is provided by the interconnection structure of the network itself. It is our belief

that PDP machines can in fact support high-speed execution of a very large class of space
based process monitor and control systems. The number of processing elements in the in-

terconnection network of a PDP machine makes overall network reliability and fault

tolerance a key consideration in space based systems. Computer systems employing fine

grained parallelism can provide an approach to a number of long standing problems involv-
ing space based experiment applications.
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ABSTRACT

The Spacelab Data Processing Facility (SLDPF) is an integral part

of the Space Shuttle data network for missions that involve

attached scientific payloads. The SLDPF has developed expert

system prototypes to aid in the performance of the quality

assurance (QA) function of Spacelab and/or Attad%ed Shuttle

Payloads (ASP) processed telemetry data. The SLDPF functions

include the capturing, quality monitoring, processing, aocount-

ing, and forwarding of data frum Spacelab and ASP missions to
various user facilities. The SLDPF consists of twD functional

elements: the S_o_ Input P=x_i_ System (SIPS) and the

S_c_ Outp_ _ing _ (SOre). The t_ _

prototypes were developed to determine their feasibility and

potential in the quality assurance of processed telemetry data.

The SIPS expert system, Knowledge System Prototype, (KSP), uses

an IBM PC/AT with the oummercial expert system shell OPS5+.

Expert knowledge (frum SIPS experts) emulating the duties of

quality assurance analysts was implemented. In an interactive

mode, a SIPS analyst responds to queries resulting in instruc-

tions and decisions governing the reprocessing, releasing or

further analysis/troubleshooting of data. Released data is

forwarded for further processing on the SOPS Sperry 1100/82. The
data are edited, time ordered with overlapping data removed,

d_ted, and quality checked before release to the user.

The SOPS QA analysts isolate problems and select the appropriate

action: either acoept the data or request the data to be reproc-

essed. The SOPS expert system emulates this prooess by utilizing
an expert system shell, CLIPS, and the Macintosh personal

cumputer. To date, these prototypes indicate potential benefi-

cial results; e,g., increase analyst productivity, decrease the

burden of tedious manual analysis, provide consistent evaluations

of data, provide concise historical records, provide training for

new analysts, and expedite the operational training of Spacelab

analysts. The logic implemented in the prototypes, the limita-

tions of the personal computers utilized, and the degree of

accessibility to input data have led to an operational configura-

tion to be implemented on a SUN 3/160 Workstation. This config-

uration is currently under development and on completion will

enhance the efficiency, both in time and quality, of releasing

Spacelab/ASP data.
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_ON:

The SI/)PFprocesses payload data from Spaoelab and ASP
missions. The SLDPFfunctions include the capture, quality
monitoring, processing, accountir_, and shipping of data to
users. The SLDPFis oomposedof two functional elements: the
SIPS and the SOPS. In SIPS, }_/_ d%annel 2 and/or channel 3

data are captured onto high-density tapes (HUEs). _he primary
functions of SIPS are the realtime capture, the monitoring of

data for quality and status ooordination with the Spaoelab
external interfaces suc_ as the Spaoelab Payload Operations

Occfcrol Center (POOC), the Mission Oontrol Center (MOC), and the
Network elements. See Figure below. _he data captured, _ud-

ing playback and direct access channel data, are processed to

produce Spacelab Experiment Data Tapes (SEDI_) and/or Space/ab

znput/oucputData Tapes (SIDe). To assurecompletenessand high
quality of SIPS prooessing, analysts currently perform quality
assurance and data a_ (QA/[_) analysis by the manual

evaluation of_ Spaoelab Quality and _ Records (SOARs)
aided with information from Spaoelab reports and logs. 9_e

results of the QA analysis determine the release of SEUgs, SIDI_

and Spacelab Quality and Accounting Tapes (SORTs) to the SOPS or
to other users. Additionaldata processingis performedby the
soPs. _e data are edited, time ordered with uverlap remm._,

_ted, quality_, and _ to users. _heQA/DA

analysis is a manual process of evaluating and correlating
information from various reports and logs to determine the

quality of the data and its status: release or rep_.
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Expert system applications in the Information Processing

Division were first considered for their potential to expedite

the SLDPF operations, in particular, the QA/[I% analyst functions

of both the SIPS and the SOPS. The extremely large volume of

data from one mission and the short turnaround requirement for

delivery to users often makes the QA/[_ task demanding and
tediously repetitive. The objective of the c__rational expert

systems is to assist the analyst by making decisions and suggest-

ing logical analysis paths based on given data quality informa-

tion. The strategy formulated to accomplish the prototypes was

to use commercial expert system shells, code the QA/E_ knowledge
bases within the shells and implement them on persQnal cQmpu-

ters. The SIPS KSP uses the OPS5+ Develc_ System with a

C language interface installed on an IBM PC/AT. The SOPS Expert

System (ES) prototype was implemented with the expert system

building tool CLIPS and an in-house-written interface on an Apple
Macintosh.

SIPS KSP:

The SIPS KSP is designed to emulate the performance of

experienced SIPS QA/DA analysts in the evaluation of Spacelab

data quality and accounting information. This function is

currently performed through the examination of data quality and

aoo_mting report.
The first task was to gather the analysis expertise of the

QA/DA analysts to determine that this area was a practical

application for an expert system. The scope of the initial

effort was restricted due to the extensiveness of the application

and the limitations of the prototype hazrlware and software

configuration. Three stages of analysis were established: ini-

tial data evaluation, oumparison of initial and redo prooessing

run data, and data _. Ead_ can stand alone logically but
need aooess to the data and decisions of the _. The use of

a database to store data quality and accounting information as

well as the decisions of each stage allows the expert syste_ to
be divided into independent modules whiQh run with the available

memory of the prototype configuration. As each module runs,

pertinent data and decisions are written to report files from

whid_ database updates and printed sunmary reports are gener-

ated. The code for database oontrol, the Front End module,

grew to include database creation and loading, data validation,

data maintenance, data selection, expert system module selection,

and expert system report selection.

_he rule-based expert system tool OPS5+ was used to develop

the knowledge base for the KSP. The knowledge elements (rules)

are in the form "IF <oondition(s)> THEN <action(s)>." The KSP

Stage i: Initial Data Evaluation knowledge base oonsists of 201

rules; Stage 2: Cumparison of Initial and Redo Processing Runs,

130 rules. Completion of Stage 3: Data Trends has been deferred

to direct the use of _ to the operational system require-
ments definition.
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The Front End interfaoes with the user in the form of

selection and input screens. Required responses are limited to

one-keystroke if default values are selected. Page forward and

backward options are provided. Data input/viewing screens are

provided to allow ir_ and data maintenance. Stage 1 interfaces

with the user in the form of a running dialog. It is initiated

by loading and initializing the evaluation program after entering

the OPS5+ environment. Data not directly downloaded is obtained

by %hser-query; responses are limited to one keystroke. Stage 1

generates a summary report printed on user request. The Stage 2

program, after being loaded and initialized, uperates without

intervention frum the user; both a summary report and a detailed

report are created and printed on user request.

SOPS ES _:

The knowledge base for the SOPS ES prototype was developed

using the nne-bas_ expert system language cLn_. All k_wledge

elements are represented in the form "IF <ocrdition(s)> THEN

<action(s)>." The knowledge base can be logically divided into

sets called knowledge islands consisting of rules to diagnose a

prablem, drive the user interface, and to retrieve data specific

to that knowledge island. A knowledge island can be modified or

replaced to reflect a p_ c_ange in SOPS without affecting

the other knowledge islands; this simplifies the modification

process. The prototype consists of four knowledge islands: Run

St_ Early, Data Gap Between Files, Data Coverage, and Data

Quality. Each was implemented only to the detail required to

realistically demonstrate the feasibility of an operational SOPS

ES. The knowledge islands will be expanded for future implemen-

tation to include particulars uncovered by this pro_.

The SOPS ES prot_ uses many of the standard features for

applications running on the Apple Macintosh. _%e features

include the use of multiple windows, pull-down menus, and dialog

boxes. Dialog boxes and windows may contain buttons, scroll

bars, or space for the analyst to type in additional information

called a text field. Whenever possible, the ES will set a

default value for the text fields; if the analyst changes the

value of a text field, the ES performs a consis_ check to

prevent the entering of unacceptable values. The primary windows

viewed by the analyst are the Transcript, Timeline, and Conclu-

sion windows. The Transcript window maintains a log of the ES

session containing all questions asked by the ES, the analyst's

responses, all reccmmendations frum the ES, and any analyst-added

cumments. The Timeline window displays the run in a graphical

format with the ES's current focus of attention flagged. The

Conclusion window displays the conclusions reached (rules fired)

by the ES. All windows can be printed upon oumpletion of the ES
session.
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CONCLUSIONS:

The prototypes show that the expert systems offer many
benefits. _hey are fast. _%ey are cons_. _he expertise of

the most experi_ staff members is now made available to all.

_he prc_ can act as training tools when refined to a
detailed level. _uuu_ut develqm_nt, ways in which current
prooedures could be further autumated to increase accessibility
to information, to improve processing speed, and to decrease the

monotony of repetitious tasks were identified. Also, areas in

the expert systems' c_n uperation will be streamlined to make the

expert system concept not only workable but cperaticr_lly practi-
cal.

_%e goal of the expert system prototypes was to define the

design and oQnfiguration of expert syst_s in the mission
envY. These new operational systems will be larger, more

efficient, and more automatic, incorporating the capabilities

indicated by, but not present in the pzotot-ypes. Both the sIPS
and SOPS operational expert system cunfigurations will use the

same hardware, the SUN 3/160 workstation, and software, CLIPS

with C language interfaces, for ccnsis_ and maintainability.

NetwDrk interfaces will be established to autumatically transfer

necessary information frum the existing SIPS and SOPS mainframes

to the workstations for the expert systems' analysis. It is

planned that this configuration will be c_/ational by December

1988, in time to support ASTRO-I, the first of several scheduled

SLDPF missions in the post-(_mllenger period.

project could not have been successful Without the

ountributior_ of the follcwing persmm_l: Troy Ames (GSFC/Oode

522), Ellen Herring (formerly an SLDPF/Oode 564 mission manager),

Janice Watson, William Dallam, Michael Alvarez, Franz Berlin,

Warren Case, Michael Garner, James Pizzola, and Beth Pum_
(all of _). _he SLDPF personnel also wish to acknuwledge

Joe Bishop (NASA Head_/Oode TS) for his continuing support
in the enhancement of the SLDPF.

185



N88-16395

FMEAssist: A KNOWLEDGE-BASED APPROACH TO
FAILURE MODES AND EFFECTS ANALYSIS

James R. Carnes
Dannie E. Cutts

Boeing Huntsville AI Center

PO Box 1470, MS JA-65
Huntsville, AL 35807

ABSTRACT

A Failure Modes and Effects Analysis workstation
(FMEAssist) has been designed for use during develop-
ment of the Space Station. It assists engineers in the
complex task of tracking failures and their effects on

the system. Engineers experience increased produc-
tivity through reduced clerical loads, reduced data
inconsistency, and significantly reduced analysis time.
System developments benefit from a more thorough
analysis than was available using previous methods.

The wide variety of design information required to

support the FMEA process is modeled b[ FMEAssist in a
network of different discipline and deslgn data views
generated by a data base to knowledge base translation

tool. System designs are displayed _raphicall[ allowing
engineers to manipulate informatlon or to induce and
record failure on appropriate parts within the network.
Propagation of functional effects for each node can be

controlled from one or more nodes within the design to
any desired level or until special conditions are
encountered.

!. INTRODUCTION

Space Station design information is modeled by FMEAssist in

a network of nodes (representing components) connected by arcs
(representing relationships between the various parts of the
design). The wide variety of information required to support the
FMEA process is acquired from a view across several heterogeneous
discipline and design data base tables and are mapped into a net-
work structure through Foundation, a data base to knowledge base
translation tool[4]. System designs are displayed graphically
allowing engineers to analyze design information and to induce
failure on appropriate parts within the network.

The architecture of this system is built upon a hierarchi-
cally decomposed functional model that determines "failure"
through abnormal component behavior. This representation permits

a more detailed description of "failure modes" beyond those typi-
cally pre-defined through either design or system engineerlng.

PRECEDING PAGE BLANK NOT FiI._:'D
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These functional failures are composed of component constraint
violations. Propagation of functional effects is controlled from

one or more 9odes within the desig 9 to an_ desired level or until
speclal condltlons, such as a critical failure, are encountered.

2. APPLICATION

Previous work on FMEA automation used a frame-based approach
where frames and slots contain pre-defined failure modes and

first order effects. While this approach offered powerful
descriptive capabilities, first-order analyses were performed
manually and entered into the model. Since assertional capabili-
ties were not provided, functional information was not modeled.

Failures were propagated through pre-programmed frame connections
using messages contained in failure mode slots.[3]

Alternately, a number of fault analysis systems have been
developed using assertional models, that is, a rule-based func-
tional approach. While assertional models provide an excellent
medium for describing functional behavior, they do not provide

the representational convenience of the structural model. Ongo-
ing work has pursued a useful mixture of structural and functlon
models. J1,6]

The FMEAssist approach integrates some of this work on the

coupling of structural and assertional components b[ combining
the connective strength of flavors with the expresslveness of
logic. A failure mode is defined as the effect a group of abnor-
mal properties has on a component. If the status of the com-
ponent, due to the its properties, is "failed" or "abnormal",
then these properties (and not the fact that the component has
malfunctioned) are propagated to connected or neighboring com-

ponents. J2,5]

Abnormal properties are grouped into failure modes at the
component level, but only to promote analysis within the failed
component. The knowledge of the mode or even the failure itself
is not distributed to the connected or surrounding nodes, but it
is the connection and environmental properties that carry a
component's fate to neighboring components. That is, a malfunc-
tioning component has no knowledge of how it affects other parts.
If the malfunction changes any of its outputs, those values

change for the connected component input ports. Input properties
for components are the output results from prevlous inference

upon abnormal properties. If these new properties constitute
failure or can be classed in a failure mode, they are so
recorded, but inference on component properties, normal or other-
wise, continues.

"Effects analysis" becomes a deductive process, reasoning
from the properties contained in a highly structured part
model[5]. The need for pre-programmed propagation responses is
replaced with a more refined description of an assembly or
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component. This type of descriptive and behavioral information
is readil[ available and can be captured during the design and
system englneering process.

3. EXAMPLES

The examples in this section are designed to promote under-
standing of the descriptive structures and behaviors found within

FMEAssist. Figure-i illustrates how components are defined and
described. The defcomponent macro in this example serves to
create a component type PUMP-A which inherits characteristics

(descriptive and behavioral) from another type called PUMP. The
defport and defproperty macros are used to deflne port/port types

and property/property values for a component type.

Some behavioral characteristics of a component type remain
constant regardless of how and where instances of it are used in
the system. These "generic" behavioral characteristics are

shared by all instances of the component type. Examples of gen-
eric behavioral descriptions can be found in Flgure-2 and
Figure-3. Other characteristics however, might change depending
on the operating conditions of the instance component. These
behavioral characteristics are determined at the particular
instance level.

While workin_ with the FMEAssist application on a Foundation
Workstation, englneers are able to graphically display networks
from various perspective relations, such as subcomponent,

failure, and connection spannin@ tree.. Inference mechanisms _ro-
vide the basis for the applicatlon's sln_le, multiple-sequentlal,
and multlple-parallel fallure propagatlon. FMEAssist also pro-
vides graphical justlfication or narratlve explanatlon for any

inference produced during the failure _ropagation. Finally,
various reports are generated on the analytlcal results from each
engineering session.

; define some generic component descriptions
(defcomponent PUMP-A (generic-type 'PUMP))
(defcomponent VALVE-C (generic-type 'VALVE))

; define input and output for generic component descriptions
(defport PUMP-A ((port-i 'thermal) (port-2 'electrical)))
(defport VALVE-C ((port-1 'thermal) (port-2 'electrical)))

; define properties for port connections
(defproperty THERMAL

(temperature (nominal high low))
(pressure (nominal high low))
(medium (air co2 water)))

FIGURE i: Examples of descriptive definitions
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; define some rules about components

(defrule PUMP-SHUTDOWN

(IF [AND [PUMP-PRESSURE-STATUS =some-pump 'LOW]
[PUMP-TEMPERATURE-STATUS =some-pump 'LOW]]

THEN (tell [PUMP-STATUS =some-pump 'ABNORMAL])))

(defrule PROPAGATE-PRESSURE-STATUS

(IF [PUMP-PRESSURE-STATUS =some-pump 'LOW]

THEN (tell [PUMP-PRESSURE-OUTPUT =some-pump
=some-port 'LOW])

(tell [(connected-to =some-pump =some-port) 'LOW])))

(defrule PROPAGATE-TEMPERATURE-STATUS
(IF [PUMP-TEMPERATURE-STATUS =some-pump 'LOW]

THEN (tell [PUMP-TEMPERATURE-OUTPUT =some-pump
=some-port 'LOW])

(tell [(connected-to =some-pump =some-port) 'LOW])))

; create some part instances
(make-component PUMP-99 (component-type 'PUMP-A))

(make-component VALVE-46 (component-type 'VALVE-C))

(make-connection '(PUMP-99 VALVE-46)
'((port-i port-l) (port-2 port-2)))

FIGURE 2: Examples of specific assertive definitions

;Output behavior rule

(defrule LEAKY-THINGS-CONTAMINATE-SURROUNDINGS

(IF [AND [LEAKS =something]

[> (PRESSURE =something)
(PRESSURE (contained-in =something

=something-else))]

THEN (tell [CONTAMINATES (medium =something)

=something-else])))

;Input behavior rule

(defrule CONTAMINATED-ELECTRONIC-COMPONENTS-MIGHT-SHORT

(IF [AND [CONTAMINATES =medium =area]

[CONTAINED-IN =component =area]

[CONDUCTOR =medium]

[ELECTRICAL-COMPONENT =component]]

THEN (tell [HAS-SHORTS =component])))

FIGURE 3: Examples of generic assertive definitions
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4. CONCLUSIONS AND FUTURE DIRECTIONS

Engineers will experience increased productivity through
reduced clerical loads, reduced data inconsistency, and signifi-
cantly reduced analysis time with the added benefit of a more
thorough analysis than was available using previous methods•
FMEAssist is easy to use, produces FMEA and Critical Items List
(CIL) reports, and keeps records of critical failures, as well as
sequences of events leading to failures.

In the future, tools like FMEAssist will make it possible
for initial failure analyses to be performed early during the
system design phases• These tools will be able to identify sig-
nificant failure modes for single and multiple-point failures.
This will free engineers from the tedious task of enumerating the

simple single failure mode groupings and to provide an extended
capability of correlating complex fallure modes with groups of
components.

•

•

•

•

.

•
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ABSTRACT

Automating spacecraft control functions with

Software introduces novel failure modes into a system,

some unique to an individual application. At the same

time, when embedded in an environment that is (at

least partially) unreliable, unpredictable, and

unspecifiable, software is vulnerable to a whole range
of unforeseen eventualities. In contrast to "off-

line" applications, however, the consequences of an

erroneous software output in an embedded system

context are, typically, immediate and potentially

disasterous.

We have been building a knowledge-based tool,

the Embedded System Safety Analysis Assistant (ESSAA),

that can assist in identifying disaster scenarios, in

which embedded software could issue hazardous control

commands to the surrounding hardware. In short, it

attempts to answer the question, "How could this

disasterous output ever occur?" Existing software-

analysis tools tend to work in the other direction -

"What if these were the starting conditions?" or, in

the case of debugging - "How did we get from these

starting conditions to this (erroneous) output?" For

the Safety issue, such analyses generally do not

suffice, since it is often the unvisualized

combinations of conditions that lead to disaster.

ESSAA, by contrast, is intended to work from

outputs to inputs, as a complement to simulation and

verification methods. And rather than treating the

software in isolation, it examines the context in

which the software is to be deployed. Given a

specified disasterous outcome, ESSAA works from a

qualitative, abstract model of the complete system to

infer sets of environmental conditions and/or failures

that could cause it. The scenarios can then be

examined in depth for plausibility using existing

techniques.

At the core of our approach is the Logic

Flowgraph Method (LFM) representation language,

suitable for capturing the functionality of hardware,

software, and physical law within a single unified

framework. The languages focuses on the key sysetm

parameters and expresses the nature of their

functional interconnections. Associated with the LFM
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language is a set of inference rules, which can

examine the LFM-expressed system model, understand the

causality involved, and deduce what combinations of

things would have to be true for a specified disaster-

outcome to occur. The system model can, of course, be

re-used to examine a series of such outcomes.

As with most Model-Based Reasoning approaches, a

non-trivial question is how to construct the initial

model. Our research on this aspect is progressing on

several fronts, including i) an Intelligent Model-

Building Assistant, incorporating a Knowledge-Base of

common satellite components and their functions, the

laws of Physics relevant to satellites, and some of

the control tasks that may get implemented in

satellite software, 2) an analyzer to deduce

functional connectivity of key SW parameters directly

from the code, and 3) enrichment of the LFM modelling

language to capture new patterns of functional

connectivity.
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ABSTRACT

Martin Marietta has designed a knowledge-based system to assist process engineers and technicians in

evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protec-

tion system of the Space Shuttle external tank (ET). The Reaction Injection Molding - Process Develop-
ment Advisor (RIM-PDA) is a "coupled system" which takes advantage of both symbolic and numeric pro-
cessing techniques. Process knowledge, consisting of heuristic knowledge acquired from domain experts,
such as case histories of chemical formulations and their moldability in test mold configurations, and the

knowledge of causal relationships derived from the empirical data will aid the process engineer in 1) identi-
fying a startup set of mold schedules, and 2) refining the mold schedules to remedy specific process prob-

lems diagnosed by the system.

INTRODUCTION

Research in expert systems and their application to machine and process control and diagnostics has
received much attention in recent years. However, relatively little has been done to provide the application

experts with any intelligent, generic tools for organizing and representing their discoveries and knowledge
of novel processes. In particular, little attention has been given to exploratory processes whose feasibility

must be confirmed by significant experimentation.

A wide array of process management tools is available for modeling and design of both discrete and
continuous processes. At one end of the spectrum are commercially available algorithms for numerical simu-
lation of chemical and fluid flow processes. These algorithms are useful only for modeling processes which

are relatively well understood and hence amenable to rigorous mathematical treatment. At the other end are
tools for symbolic representation that are well suited for describing process domains which are too complex
to be modeled numerically, yet represent a significant body of experiential process knowledge. The
knowledge acquired from those in the field (also referred to as domain experts) is usually available in the
form of process heuristics or "rules of thumb" which have been developed and refined through a combina-
tion of intuition and trial and error over an extended period. Such knowledge, represented in the form of

condition-action pairs, can be called upon by a novice to help with local process problems.

A major drawback of the symbolic reasoning systems (also called expert systems) developed thus far

is their lack of mechanisms for guiding the process engineer in exploring the causal relationships between
process parameters and their effects on process performance. That is, they provide no capabilities for gen-

eric process development, such as deriving and representing parameter interactions between successive
stages of a multi-stage process, which is crucial for model development and/or refinement. This paper
highlights the characteristics of intelligent information processing technology that would most appropriately
address the important issues in process development. Our discussion is based on our experience with the

design of a process development advisor to assist process engineers in developing a complex foam Reaction
Injection Molding (RIM) process. Both the advisor and the process are currently under development as a

joint effort between Martin Marietta Corporation and NASA at NASA's Productivity Enhancement Center.

In the following, process development tasks common to a large class of process and manufacturing

domains are identified, followed by a description of the RIM process and the design of a system to address

the development tasks that are relevant to the RIM domain.

*Affiliated with Martin Marietta Laboratories, Artificial Intelligence Group, 1450 S. Rolling Road, Baltimore, MD 21227.
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PROCESS DEVELOPMENT TASK: A PERSPECTIVE

How generic can a process development task be? Although the problem domain of immediate interest
to us is the manufacture of poly-isocyanurate (PIR) moldings with RIM technology, our principal concern is

developing tools and techniques that are useful for generic process development tasks. Hence, the system

design we propose for this purpose is equally applicable to development activities in composites, metals,
and semiconductor fabrication.

In a polymer molding operation, a process is considered developed if the molded parts consistently

meet the functional requirements of the intended application. For our domain, these requirements would be
in the form of mechanical and physical properties and thermal protection criteria for the external tank (ET),
as stated in the design specifications. In this case, process development also includes process problem diag-

nosis and solution, as well as process optimization for greater consistency, higher quality, and improved

efficiency.

Expert process engineers are very successful at diagnosing process problems because they can envision
a process as a continuum as well as a construct of discrete major functional components. This duality allows
them to track major process events and relate them to the relevant interactions between the parameters of

the components. The interactions of specific interest are later characterized by modeling the parameter rela-
tionships empirically through carefully designed sets of experiments. The experience so gained is then used

for qualitative analysis of the relative importance of the control parameters and quantitative manipulations
of the functional relationships to produce a desired improvement in the properties and thus quality of the

molded parts. The experience described above is believed to be quite generic and common to all process
development domains.

To perform these representation and reasoning tasks, an engineer needs a system that will allow con-
struction of a causal model for simulation of the process behavior at a high level of abstraction. This model

can be refined as more information is obtained about the precise quantitative relationships from the experi-
mental data, and knowledge of these relationships can then be reasoned with to determine the tolerance win-
dows on all material and equipment controls for optimum performance. A schematic describing the three-

layered process development scheme applicable to the RIM process is shown in Figure 1. The schemes for
knowledge acquisition, knowledge representation, and reasoning are distinctly different at each layer.

A system that embodies a hybrid representation comprising the three layers discussed above should be
able to answer a wide variety of process-related questions, ranging from very general to very specific. For

example, a process engineer may want to understand the role of a catalyst in PIR polymer formulation.
Catalysts come in many varieties, ranging from those that accelerate reaction rates to those that promote
selective precipitation. A process engineer should be able to ask the following types of questions of such a

system:

Causal Level: How does the catalyst concentration impact the flowability of PIR formulations?

Empirical Level: If the catalyst concentration is increased by 10%, how will the gelation time of the poly-
mer change?

Heuristic Level: Do catalysts usually affect fiowability?

Here, the concerns addressed are primarily those of knowledge acquisition, knowledge representation, and
reasoning at the second layer. Issues pertaining to causal modeling, causal simulation, and integration of all

three layers for efficient reasoning will be a subject of future study.

Systematic and efficient acquisition of process knowledge derives from the application of appropriate

experimental methods and analysis tools to identify the process-critical variables and determine their impact

on the processability of the polymeric material. Such tools must couple numeric processing algorithms for
analysis with symbolic processing schemas for reasoning and interpretation of the analytical results

[Kitzmiller]. Hence, our approach is to design a coupled system with the following features:

1. Computationally efficient numeric algorithms for statistics, analysis, and graphics, which exist as
separate modules and are callable by the system as needed

2. Symbolic processes to guide the user in identifying the right selection of numeric routines to ex-

tract the empirical relationships and in interpreting the results.

/
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Additionally, the knowledge acquired has to be represented in a manner natural for reasoning within

the process development environment, i.e., for dealing with process problem diagnosis and corrective
actions. Within the RIM-PIR domain, the reasoning tasks rely heavily on the explicit representation of

parameter effects on the characteristic properties of the process. A detailed description of the RIM process

and its requirements follows.

The RIM Process

Reaction injection molding is a process in which polymeric products are formed from highly reactive
chemicals in high-pressure impingement mixing machines. Obtaining the desired functional properties of the

molded part requires control of a wide variety of process variables associated with four major process areas:

1. The chemical systems which produce the urethane and PIR polymers

2. The RIM machine itself, including at least two metering pumps, a self-cleaning impingement

mixer, a set of temperature-controlled conditioning tanks, and the piping, hoses, filters, and con-

trols required for operation

3. The mold support or mold-handling system

4. The mold temperature-control system.

Activities in these four areas are interdependent. The chemical systems must form polymers with the

physical properties required for the part being molded; the metering system must meter accurately and mix
thoroughly; the mold support must position the mold to best facilitate the expansion process; and the mold
itself must be designed to facilitate the flow of the mixed reactants during filling and expansion, and to con-

trol the temperature of the chemical reaction within a relatively narrow range. The fluid expansion operation
inside a mold is particularly complex because it involves multiphase flow of reactive polymers that undergo

rapid state changes.

Figure 2 shows a process flow diagram for a RIM process. Since the process is still in its prototype

phase, all pre- and post-process operations are performed either manually or by offline dedicated systems.
Engineering evaluation and quality inspection tests are performed at the end of a complex part molding pro-
cess to provide the process engineers with early information on the status of the manufacturing process.
Although the tests could indicate a variety of process problems at several levels of complexity, the level at

which a process engineer may choose to diagnose a problem usually depends on his experience with the

process and his training in modeling and analyzing the process. For example, a novice process engineer may
try to resolve inconsistencies in part quality by making ad hoc changes in mold setup or RIM machine
parameters because he does not recognize the true source of the problem. Diagnosing the actual cause of

substandard part moldings requires careful analysis of parameter interactions at multiple stages of the mold-
ing operation.

The multistage diagram of the RIM process shown in Figure 3 is a simplified representation of the
typical parameters that affect the process. At each stage, there are generally several options for modifying

the process behavior. One such option is to change the reactivity of the chemical formulation, which, in the
case of PIR formulations, is known to have a major impact on the processability of the material. For exam-

ple, improved flowability could be achieved by changing the concentrations of the catalysts, or the blowing
agents or some combination of the two. On the other hand, for duplicating the processing capabilities of a
prototype operation on a delivery system, it is more appropriate to scale the reactivity up or down (within

limits) by changing the impingement pressure at the RIM machine stage or the temperature of the mold at
the mold setup stage. The best or the optimal of the available alternatives is generally not obvious and may

require a thorough and careful analysis of multivariate effects on the response surface of the characteristic

properties.

In addition to understanding the process behavior modifications produced by intra-state parameter vari-

ations, the process engineer also needs to study their effect on the process over the succeeding stages. For

example, the complexity of a part to be RiM-molded is usually determined by the overall size of the part
and the maximum cumulative resistance to flow through the mold. If the part is too big and/or the flow

resistance is too high, then the part may have to be made from two or more simpler molds. This decision, in

turn, will govern the appropriate settings of the mold setup parameters at a succeeding stage. The process

variables that may affect the molding quality are:
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• Polymer component ratio

• Catalyst concentration

• Mold temperature
• Mold orientation

• Impingement pressure

• Gate location

• Vent locations

• Shot size.

Some typical problems resulting from lack of control of one or more of these variables are:

1. Incomplete fill - Failure of the expanding foam to reach all parts of the
mold cavity

2. Voids - Presence of large blowholes or pinholes in the molded

part

3. Warp - Bent part, deviating from flat condition or dimensions
out of tolerance

4. Flash - A film of excess material outside the mold cavity

5. Density Reject - Part density not within specification

6. Hardness Reject - Rind hardness not within specification

7. Strength Reject - Tensile strength not within specification.

Some of these problems belong to a class referred to as gross defects; i.e., these are quality defects in

the molded part whose remedy requires gross adjustments in one or more control parameters. Such problems
are best handled by resorting to the use of heuristics. For example, the presence of large voids in a molded
part is usually attributed to lack of appropriate vent holes in the mold to bleed off air entrapped during the

expansion process. Hence, the system can capture this knowledge through a rule as follows:

IF there is evidence of LARGE VOIDS in the part

AND there is CERTAINTY > 0.9 of VOIDS due to ENTRAPPED AIR

THEN provide VENT HOLES in the mold where the voids are found

Other problems are more subtle and require careful analysis to establish the ideal window of process param-
eter values. All problems regarding properties that are out of specification belong to this class.

KNOWLEDGE BASE

The knowledge of the system consists of information on chemical formulations and part geometries
that have been used in the past and have relevance to the ongoing process development. Each chemical for-

mulation exhibits a characteristic behavior which can be expressed in terms of its state changes over time
(for reactive chemical systems, such behavior is also referred to as its reactivity). Qualitative descriptions of

observable states, such as "cream," "gel," "string," and "tack-free," then generate a quantity space
[Forbus] for a continuous process over a temporal dimension. The case history for each chemical formula-

tion is thus represented by such a quantity space because it contains critical phase transformations of the
fluid which provide important information regarding the processability of the chemical formulation.

The case history for part geometry is grouped into classes of parts requiring similar startup process
parameters. Currently, there are three distinct part classes: spherical, rectangular, or prismoidal. Within
each class, there are fm,ther fine-grained distinctions or subclasses. Assignment of a part to a particular sub-

class is determined by the number and type of its primitive flow obstruction features. Such a classification
scheme minimizes the process development time significantly by encompassing mold schedules already

developed for parts in the subclasses of the case history.

Process data acquired from the RIM machine and the process-monitoring instruments are represented

in the form of records. Query language facilities of a relational database manager are used to generate data
summaries, which are then used by the analysis module as needed to derive individual parameter effects on

the processability of the material. All data within the analysis module are represented in the form of arrays
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because of their efficient representation of numeric processing algorithms as well as graphics algorithms to
communicate the parameter effects graphically to the user.

The knowledge base also contains data analysis and data interpretation schemas. These determine
when to call certain analysis functions to determine statistical distributions and variances, and provide

methods for evaluating the effects of individual parameters on the behavior of the process, respectively.

KNOWLEDGE REPRESENTATION AND CONTROL

The process diagnostic knowledge of the system consists of heuristics represented in the form of pro-
duction rules [Davis] and data objects. The rules explicitly state the relationship between part defects and
the actions that could remedy such defects, while the object framework is a representation of data on gross

visual defects and the test results on the properties of the molded part. Generally, objects belong to one or
more classes and have properties with value slots, as shown in Figure 4.

The parameter effects are represented in the form of intensities, distributions, and explicit mathemati-
cal formulations [Blum] and may be accessed from the knowledge base and/or database by the inference

engine. All data analysis and interpretation schemas have a Shank's "script" [Shank] flavor. The schemas

are represented as frames [Stefik], enabling them to be instantiated with relevant parameter values.

The system inferencing scheme is mainly data-driven/forward chaining. The initial set of findings
establishes the focus of attention, which then controls the evaluation of only those hypotheses which are

relevant to the current line of reasoning. Hypotheses that share common data objects are grouped into clus-
ters called "knowledge islands." The presence of such clustering significantly improves the speed and
efficiency of inference. Hypotheses within a knowledge island are organized hierarchically and are explicitly
categorized to control the order of their evaluation. Such a categorization is necessary to ensure a consistent

dialogue with the user-- a dialogue that is logically relevant to the problem under consideration.

Sample Session with RIM-PDA

The control within the system is illustrated in Figure 5. The user usually needs advice from the system
if a new part with a different geometric configuration is being considered for molding or a new chemical

formulation with a different reactivity characteristic is being evaluated for use as a molding material. The
user initiates a dialogue by generating an appropriate event to inform the system that a new set of mold
schedules is required. The system searches through the case histories to find the mold schedules of a case

which closely resembles the current one. The startup set of schedules is then used to execute the first itera-

tion of the molding operation. In-process sensory data collected during the molding operation, together with
the post-process test results, are then analyzed to inform the user of the health of the process. If the user
informs the system about any problems in the quality of the molded part, the system enters the refinement

phase [Bharwani], diagnosing the source of the problem and recommending a new set of mold schedules
each time a problem is reported.

CONCLUSIONS

This paper has addressed process development as a generic engineering task and identified its demands

on advanced information technology. A coupled system is proposed to take advantage of conventional algo-
rithmic approaches as well as state-of-the-art artificial intelligence methodologies to cope with the identified

tasks. Several issues identified earlier are currently under investigation. Mechanisms for switching between
layers of reasoning based on the type of question asked of the system have yet to be developed. Addition-
ally, the concept of a quantity space for causal simulation needs further refinement.
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Abstract

Since 1984, a low-level effort has been underway at Rocketdyne,

manufacturer of the Space Shuttle Main Engine (SSME), to automate

much of the analysis procedure conducted after test firings.

Previously published articles in corporate publicatSons,

international conference proceedings, and the international trade

press have contained the context of and justification for this

effort [4, 8, 9], and technical issues regarding the integration

of large data bases with the run-time component of the

knowledge-base system [2]. In this paper, progress is reported

in building the full system, known as SCOTTY, after a noted 23rd

century rocket propulsion expert.

The progress is on two fronts. The first is an organizational or

philosophical one: the automated analysis of SSME tests is a

complex process, but only part of it typically involves an

expert. That is, this expert knowledge-based system is called

only when required; there are many more mundane tasks which may

interface to an expert, but do not require heuristic technical

expertise. Don't make your technical expert also serve as the

program manager!

The second front of progress is a technical one. Since the very

inception of the program, it has been strongly believed that the

intrinsic nature of SSME test analysis and character of

inductive-based expert system building tools (ESBTs) represent an

excellent match of problem and tool. It was, in fact, the

driving consideration for the 1984 recommendation given to

management, along with the critical feature of being software-
compatible with existing systems, i.e., the tool must be able to

generate Fortran code. The intuition has been justified by the

relative ease with which a significant source of corporate

diagnostic and analytical expertise has been transformed to

examples and thence to effective production rules. The source of

this expertise is in completed SSME anomaly forms, one for each
of the 1400+ tests conducted since 1975. The latter

transformation from examples to production rules is accomplished

automatically with a powerful inductive ESBT, ExTran 7 from

Intelligent Terminals Ltd. [I], running on a Concurrent Computer

Corporation 3260 super-minicomputer. The engineering staff

responsible for building (and eventually maintaining) SCOTTY has

consistently used examples as input -- a single rule has yet to

be written. The knowledge-acquisition "bottleneck" is thus much

wider than for most previously-reported expert systems.
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The moderate expansion of the former low-level efforts in

constructing an automated test analysis procedure for the SSME

will be discussed in this paper. The topics will cover

qualitative and quantitative details of the above organizational
and technical issues, as well as various possible extensions

being considered. These include:

the integration of a large-scale relational data base system

[3] and example generation at the knowledge acquisition

component of ExTran 7,

a graphics interface for experts and end-user engineers,

increased efficiency from exploiting concurrency in problem

and machine,

potential extension of a tuned and limited subset of the

system to flight engines,

application of the system for training purposes of many

newly-hired engineers,

incorporation of design and monitoring tasks into an

automated system,

technology transfer to other engines and Rocketdyne programs,

an anomaly description language, and

the essential qualities of good software engineering

practices for building expert knowledge-based systems.

Introduction

Every time a Space Shuttle Main Engine (SSME) is test fired,

hundreds of measurements are taken from a wide variety of

sensors. Many more values are also calculated. All of these data

values, when combined with previous performance of the engine and

its components, are used by the engineering staff at Rocketdyne

to determine the future tests. These outcomes can vary from all

requirements being met, to a few minor events, to a rare

significant event. As the SSME is the world's most complex

reusable liquid-fuel (oxygen and hydrogen) rocket engine,

Rocketdyne and NASA, the customer, consistently insist that a

thorough investigation of each test firing be performed by our

most highly-trained staff. This emphasis on quality is

heightened even further as a result of the Challenger tragedy,

ensuring that the next scheduled shuttle flight, Discovery in

June of 1988, will be the safest that is humanly possible. The

recent increase in the SSME testing schedule, to about twelve per

month, is witness of this concern.

To continue its virtually perfect record of supporting

shuttle flights, Rocketdyne is always looking for ways, both

technical and organizational, to improve the quality of our

product while working within customer guidelines. One of the

major methods involves making the most accurate diagnosis,

analysis, and recommendation possible for the the next engine

test or shuttle flight. To perform this task, reliance has been

on maximal use of sophisticated tools and the expertise of an

engineering staff. This staff has accumulated experience dating

back to 1975 and covering 1400+ SSME firings, plus numerous other

ones from the Apollo F-I and J-2 engines to those on the Atlas.

In addition to gaining incalculable experience over the

years, the engineering staff has also been gaining an increase in

another quality -- age. Like most other aerospace companies,

Rocketdyne has a significant gap between staff with 20-30 years

of experience and those with 5-10 years. Although the young
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engineers are bright and motivated, they are keenly aware they do

not possess the wealth of background of our older senior staff.

These staff engineers are approaching or at retirement age, but

their replacements have considerably less rocket engine

experience. Hence, Rocketdyne is confronted with a significant

dilemma: how to improve the quality of SSME test analysis in the

face of diminishing senior staff. Several options to solve this

dilemma were discussed in [4]. It was decided to use a

combination of staff, results from previous SSME tests, and

automated tools to address the problem and begin to build a

prototype for automated corporate expertise.

Rocketdyne is far from alone in being confronted with the

above problems. Indeed, the corporation has ample "company" in

deciding to use a type of automated tool know as expert systems,

part of the artificial intelligence technology. In fact, there

is considerable concern that, once again, this field is in danger

of being "over-hyped" [6]. And the company is certainly not the

first to decide to concentrate initially on a diagnosis type

application, a type currently of considerable importance in

industry despite being "old-hat" to the AI research community.

So what is unique about SCOTTY, our automated system? There are

two unusual aspects.

One such aspect is the incorporation of SCOTTY as "another",
albeit advanced, software tool which must:

live in a distributed corporate environment,

talk to large data bases,

be maintained by existing engineering staff,

run with color graphics terminals,

execute on standard computers,

be amenable to parallel processing hardware, and

meet corporate-wide software engineering development and

quality guidelines.

The other unusual aspect is a technical one which increases

the ease with which SCOTTY can be constructed. By use of a type

of ESBT known as inductive or example-based, the historical

expertise now reposing in the anomaly sheets for the hundreds of

SSME tests can be transformed into examples, and thence

automatically into production rules. These rules will, in turn,
drive SCOTTY during normal day-to-day operation in future years.

SCOTTY

History

In 1984, the author was hired by Rocketdyne to assist in the

construction of an automated tool for SSME test analysis. Within

two months, a proof-of-concept model for a High Pressure Oxidizer

Turbo Pump (HPOTP) had been built. This involved recommendation

of an inductive ESBT, Expert Ease by Intelligent Terminals, Ltd

(ITL) in Glasgow, Scotland, and the first such PC-based ESBT

commercially available. The tool was purchased and used, after

minimal training time, by a mechanical engineer, to diagnose

HPOTP anomalies, by specifying 42 examples and nine attributes.

A 48 rule subsystem was automatically generated by Expert Ease.

No rules were required of the engineer. This prototype and the

problem context, rationale, and solution were described in an

early paper [4]. A desirable tentative system configuration is

shown in Figure I.
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with ExTran

During 1985 and 1986, the system (now named SCOTTY) underwent

several extensions. From a tool viewpoint, a more powerful ESBT

became available. ExTran 7, an industrial strength Fortran-

based inductive ESBT from ITL which runs on a wide variety of

machines from PCs to workstations to super-minis to mainframes,

was recommended. A process for using ExTran is given in Figure

2. ITL ported the product to the available Concurrent Computer

Corporation 3260 super-mini at minimal cost. The HPOTP examples

were immediately transported to ExTran and the resulting module

was now a true, albeit simple, knowledge base system (KBS)

utilizing "Why", "How", and "What if" type questions, history

files, external interfaces, and all the other features usually
associated with a KBS.

Conceptually, SCOTTY was extended in several directions

during this same time period. It was demonstrated that multiple

problems could be run concurrently on the multiple processor

Concurrent 3260. Graphics routines (PLOT-10 and GKS libraries)
were tied to ExTran with a minimum interface. In-house

statistical routines were easily linked to SCOTTY. Small Fortran

routines were written to access SSME test files and output

attribute values for input to SCOTTY sub-problems. Additional

SSME component modules were specified. Figure 3 contains the

early version of a structure chart. A major extension was the

run-time interface between ExTran and the large data base

managment system DMS/32 supplied by Concurrent (then known as

Perkin-Elmer). These are all described extensively in a paper

presented in 1986 [2].
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Current Status

SCOTTY now exists at a stage between a research prototype and

a production model, using the taxonomy of Waterman [6]. It is

not being used in production now -- additional resources would

permit this to occur sooner. SCOTTY consists of far more than

"just" an expert system, as is clearly shown in figure 4, but

rather is one component in a fairly extensive software system.

This reflects the strong belief that viable expert systems are

most likely to succeed in a hybrid and integrated environment,

where they must communicate easily with other standard existing

and future sub-systems.
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Figure 4. Context of SCOTTY (Automated Test Data Expert)

An updated structure chart reflects the understanding that

SSME test analysis involves several levels of expertise, from

relatively mechanical but comprehensive data review to component

and system level diagnostic and analytical experts. See Figure

5. For many routine tests, the expert system is not required.
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This is no stranger than the human equivalent case of calling on
resources only when needed. The program manager decides when

he/she must draw on the rare and expensive human expert. Do not

make the mistake of having your senior technical specialist

trying to "double" as program manager. These two entities have

different types of expertise.

Figure 5. SCOTTY Structure Chart, Version .9X

SCOTTY, as of mid 1987, consists of 18 ExTran modules

comprising 3200 lines of code (LOC) in Fortran. Supporting code

required 5000 LOC. The ExTran generated code was derived

automatically from approximately 260 examples. No rules have

been written by hand to date -- all 700 rules were induced.

Extensions in Proqress

Development is continuing on a number of fronts for SCOTTY.

Three are highlighted here: graphics, anomaly data, and a new
extension to ExTran.

As SCOTTY matures, the level of effort devoted to its

development has increased. The first efforts were done solely on

Rocketdyne internal R&D funds. Currently, funding efforts have

been underway for some time with a customer for making the system

a production one more quickly. Recently hired engineers and

computer scientists have been active in extending the structure,

leaving the knowledge content to acknowledged experts. A SSME

instrumentation chart, now taped to the walls of hundreds of

Rocketdyne engineering offices, is being converted to a dynamic

color computer graphics form. See Figure 6 for a sample,

purposefully simple, display of a Low Pressure Fuel TurboPump

(LPFTP). This graphics subsystem will have capabilities to zoom,

highlight problem areas (according to actual test data
measurements), and depict flow. This is no___tCAD/CAM, although

there are a few common themes, nor is it extensive CFD modeling
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of the National Aerospace Plane (NASP) using multi-million dollar

CRAY 2s. It is a practical and feasible use of moderate color

resolution on the readily available super-mini and terminals.

Engineers on the floor, as would be expected, are very pleased to

see in graphical form what they have hitherto had to dig out of

static tables and plots.
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Figure 6. Simple Graphic Display for a LPFTP

Anomaly data is a key to the success of SCOTTY. It provides

a sta_tinq point for converting much of the SSME testing

expertise repository into machine readable form. Serious efforts

are underway to use this source to augment the experience now

encapsulated in the heads of senior engineering staff• Each

anomaly sheet consists of three major fields: problem (symptoms),

analysis (causes), and recommendations. See Figure 7 for a

(dummy) sample. Zero or more anomalies are recorded for each

test, usually very minor ones. By carefully reviewing each

anomaly and any back-up plots/tables, it is possible to convert

each one into an example format consisting of a set of
attribute-values and decisions. Anomalies for the first several

tests tried are converted rather slowly, as new attributes are

frequently added• However, as experience in the conversion

process is gained, and the rate of growth of new attributes

slows, the rate of the anomaly to example format conversion

increases significantly.
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Figure 7. Sample Anomaly Data
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The third extension underway is the intention to use a new

feature of ExTran which is the result of a joint project between

ITL and Concurrent with roots in the earlier work at Rocketdyne

[2]. This feature extends the interface between ExTran and a

data base system to the knowledge acquisition component of the

former, as well as the run-time interface discussed in [2]. See

Figures 8, 9, and 10. The effort of this joint project is known

as Reliance-Expert, and is scheduled to undergo beta test at

Rocketdyne. It would permit the anomaly data tobe transformed

to records in a relational DBMS. This would make this valuable

data available for a wide variety of uses. One of the uses would

be to serve as an "expert" for historical knowledge of SCOTTY, as
it can now be transformed automatically into examples and then to

rules. So, once again, the knowledge acquisition bottleneck

becomes less and less of an issue, as it will be possible to go

directly from anomaly records in a DBMS to production rules in an

expert system.

EXTRAN

Expert System

Generator

Reliance Expert

Figure 8. Reliance

Expert Structure

Figure 9. Reliance Expert

Development Phase
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Figure I0. Reliance Expert Run-time Phase
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_u_ure DeveloDment Issues

Further in the future are several concerns. There is an

interest in each as a potential contributor to improving the

quality of SSME test analysis. Obviously, Rocketdyne is keenly

concerned also about technology transfer to other types of

engines, in addition to the SSME. The company is deeply
committed to the Advanced Launch System (ALS), Space Station

power, National Aerpspace Plane (NASP), Orbital Transfer Vehicles

(OTV), and other propulsion and energy systems.

These further-reaching concerns are concentrated both in

application and technical areas. On the application side,

Rocketdyne would like to investigate the potential of extending
SCOTTY to handle a limited subset of the measurement data for

flight engines. The incorporation of monitoring and design tasks

is also of high interest. An obvious application is to enlarge

the context of SCOTTY to include new hire training on SSME test

analysis.

On the tool side, the issue of dealing with uncertain and/or

noisy example data is significant. Real engineering problems

involve uncertain and incomplete information. Indeed, a noted

nuclear engineer, Dr. BillY Koen at the University of Texas in

Austin, has gone so far as to define the engineering method as

"the use of heuristics to cause the best change in a poorly

understood or uncertain situation within the available resources"

[5]. This feature exists on several commercial tools, but only

in a pre-release form for ExTran, as of this date. The

possibility of using abductive reasoning for diagnosis also

appears to hold some promise [7].

Cqnclusions

Since 1984, a low-level effort has been underway at Rocketdyne,

manufacturer of the Space Shuttle Main Engine (SSME), to automate

much of the analysis procedure conducted after test firings. In

this paper, we reported on progress in building the full system,

known as SCOTTY, after a noted 23rd century rocket propulsion

expert.

The progress is on two fronts. The first is an organizational

one: the automated analysis of SSME tests is a complex process,

but only _ of it typically involves an expert. Don't make

your technical expert also serve as the program manager!

The second front of progress is a technical one. Since the very

inception of the program, it has been strongly believed that the

intrinsic nature of SSME test analysis and character of

inductive-based ESBTs represent an excellent match of problem and

tool. The intuition has been justified by the relative ease with

which a significant source of corporate diagnostic and analytical

expertise has been transformed to examples and thence to

effective production rules. The source of this expertise is in

completed SSME anomaly forms, one for each of the 1400+ tests
conducted since 1975. The latter transformation from examples to

production rules is accomplished automatically with a powerful
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inductive ESBT, ExTran 7, running on a Concurrent Computer

Corporation 3260 super-minicomputer. The engineering staff

responsible for building (and eventually maintaining) SCOTTY has

consistently used examples as input -- a single rule has yet to

be written. The knowledge-acquisition "bottleneck" is thus much

wider than for most previously-reported expert systems.

The moderate expansion of the former low-level efforts in

constructing an automated test analysis procedure for the SSME

was discussed. The topics covered qualitative and quantitative

details of the above organizational and technical issues, as well

as various possible extensions being considered. These included:

the integration of a large-scale relational data base system

and example generation at the knowledge acquisition

component of ExTran 7, and

a graphics interface for experts and end-user engineers.
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ABSTRACT

A prototype expert system (named ADDAMX) is being developed

using a rule induction expert system development tool, EX-TRAN

7.0. ADDAMX will analyze graphically represented rotordynamic

high frequency dependent data from the low and high pressure

liquid hydrogen (fuel) and liquid oxygen (LOX) turbopumps on the
Space Shuttle Main Engine. It infers the operation of the

turbopumps by using knowledge from an expert coded into rules to

analyze Spectral Data. ADDAMX infers the turbopumps operation by

identifying the speed frequencies and harmonics from each

respective turbopump, the frequency feed through from one

turbopump to another, the bearing generated frequencies from the

pump and turbine end of the turbopumps and the pseudo and super
pseudo 3N frequencies from the phase two High Pressure Fuel

Turbopump (HPFTP).
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1.0 INTRODUCTION

Analysis of rotordynamic high frequency dependent data is a
team effort and time consuming manual procedure. The Automated

Dynamic Data Analysis and Management system (ADDAM) will process

and graphically represent the high frequency dependent data. This

will significantly reducing the processing time; however, the
analysis of the data will continue to be time consuming. This
bottleneck is a result of the quantity of graphs and data

routinely analyzed. To further complicate the dilemma, the

knowledge to analyze the data reside in a few expert analysts;
therefore, the routine and challenging analysis of data are

further bottlenecked.

2.0 OBJECTIVE

The objective of the project is to develop a prototype expert

system using a rule induction FORTRAN based expert system
development tool called EX-TRAN 7.0. The Automated Dynamic Data

Analysis and Management Expert System (ADDAMX) will analyze

graphically represented high frequency dependent data, in the form

of Power Spectral Density Plots (PSD), collected from strategic

points of measurement on the Space Shuttle Main Engine (SSME)

turbopumps. ADDAMX will identify the source of specific sinusoids
which are indicative of the turbopumps operation using

domain-specific knowledge, analysis techniques, rules of thumb

acquired during interviews with the expert analyst and knowledge
from documents approved by the expert analyst. The results of the

analysis will be shared with the nonexpert or expert user

(relative to the subject matter) in an effective manner.

3.0 KNOWLEDGE ACQUISITION
The theory of data acquisition, data representation, data

interpretation and communication within the rotordynamic arena
must be understood by the author (knowledge engineer) and the

reader. Two methods to gain an understanding of the data were

used; the first is reading two documents which give a good

comprehensive overview of the data and the second is interviewing

the expert. The first document is the "Rotordynamics High

Frequency Dynamic Data Summary Book SSME Turbomachinery". This is
an in-house proprietary document generated by experts in the

field. The second document is Application Aote 243, "THE

FUNDAMENTAL OF SIGNAL ANALYSIS", a document prepared by Hewlett

Packard. Using both of these documents one can begin to

understand data and the language used by the expert analyst.

The second part of understanding data included interviewing

the expert. The task of analyzing data is divided amongst several

people who work as a team. Identification of each team player's
task is important. Several lengthy sessions with the expert were
held to discuss the theory of data acquisition, data

representation, data interpretation and the analyzing team's
structure. The interview process usually consisted of a one hour

session where the author asked questions of the expert. The

response usually prompted additional questions relative to the

subject. After the interview the acquired knowledge, "rules of
thumb" and "tricks of the trade" were reduced to a written form,

then presented to the expert at the next session for review and
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corrections. This continuous transfer and check process assured

an accurate transfer of knowledge.

The identification of the specific duties and responsibilities

of the expert and the associates helped to divide the process into

steps which would later help structure the expert system. Each
associate was interviewed to obtain his knowledge for the

particular task he performed. Keep in mind the associates can be

considered experts in their particular task; however, relative to

the project they are referred to as associates.

Occasional conflicts of theory or the process of analyzing

data were resolved by asking the expert to clarify the theory or

process to both the knowledge engineer and the associate. This

way an open communication and consistent application of the

knowledge was assured. The expert had the final say in the

conflict.

3.1 DATA MANAGEMENT

High frequency data is recorded onto magnetic tapes during hot

fire and flight SSME engines from strategically located

accelerometers on the low and high pressure liquid hydrogen (fuel)

and liquid oxygen (LOX) turbopumps, preburners and the preburner

pump. Thrust level of the engine and the venting and/or

pressurization of the fuel and LOX tanks is also recorded. The

tapes are delivered to the appropriate real-time data analysis

(RTDA) labs where data is digitized and then displayed on graphs

used by the Data Analyst to infer the operation of the

turbopumps. The ADDAM system is specially designed to display

data in several types of graphs.

The team reviews the graphs to identify "expected events"

indicating the nominal operation of the turbopumps. The team

identifies events which need more analysis. These latter events

are referred to as anomalies and may indicate non-nominal

operation of a particular turbopump.

4.0 KNOWLEDGE REPRESENTATION

The creative aspect of representing the knowledge obtained

from the expert and the associates proved to be the most

challenging part of the project. Several methods and schemes were

attempted until the present one was adopted.

The terms used in the sections to follow are obtained from the

theory and nomenclature in the EX-TRAN 7.0 user manual, June 1984,

documented by Mohammed A-razzak and Thamir Hassan, Intelligent

Terminal LTD., U.K. [reference 3].

A main problem is the object in question or the problem to be

solved. The main problem can be divided into subproblems each

with its unique or common attributes. The attribute's values,

numeric or symbolic, combined in certain ways (examples) will give

the subproblems unique values which contribute to the solution of

the main problem. The arguments determine the value of the

attribute and are obtained by special subroutines which get the

value from the ADDAM system.
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4.1 EXPERT SYSTEM IMPLEMENTATION

ADDAMX is divided into 2 modules. The first is a "batch mode"

module where analysis of the PSD plots is executed automatically.

A PSD graph plots the power spectral density in G's squared per

hertz versus frequency in hertz at a selected time slice. Events

on the PSD plot are identified directly on the PSD plot hardcopy.

No explanation is given of how the results are obtained (see
figure 4.1). The second module is a "user interactive" module

where the common expert system features of explanation of analysis
behavior is possible. This module has received less priority then
the batch module because of the need of the batch module. The

concepts presented are implemented into both modules.

The main problem for the interactive module of ADDAMX is

divided into eight subproblems (see figure 4.2). Attributes

within subproblems can have several different values. The main

problem for the batch module of ADDAMX uses five subproblems (see

figure 4.3). These five subproblems use the same attributes as

the above eight subproblems and do the same analysis.
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Figure 4.1: Batch module hardcopy output.
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FUTURE

DEVELOPMENT

SYNPWR

FEDMLT

Figure 4.2: ADDAMX interactive

subproblem flow
chart.

Figure 4.3: ADDAMX batch

subproblem flow
chart.

The ADDAMX interactive module uses two types of subproblems:
"control subproblems" and "analysis subproblems". These names are

unique to this project and may not be found in other literature.

The control subproblems are "RMS", "PLOT", and "PSD". These

subproblems control the execution of the other subproblems by
directing the flow to the appropriate branch of the tree as shown

in figure 4.2. The above subproblems do not directly analyze data

to infer the turbopump's operation. For example, subproblem

"PLOT" directs the flow of analysis to the appropriate knowledge

base identified with the graph to be used to infer the turbopump
operation. Each graph has its own knowledge base which deals with
the graph's attributes and variables.

The analysis subproblems are "NOISE", "SYNPWR", "FEDMLT",
"BRNG" and "SUDO". These subproblems analyze data directly to
infer the turbopumps operation. FORTRAN IF-THEN rules are

generated using an extension of Quinlan's ID3 algorithm (see

Michalski, Carbonell and Mitchell, 1983) from examples obtained

and derived from the knowledge aquired. The "noise" subproblem
analyzes a sinusoid for the selected PSD measurement to determine

if it is not indicative of a known non-turbopump frequency

generating source; for example, a sixty hertz electrical cycle.

Subproblem "SYNPWR" contains the knowledge for identifying a
sinusoid as a speed synchronous or multiple of speed synchronous

frequency for the appropriate turbopump. Subproblem "FEDMLT"

identifies sinusoids which feed from one turbopump to another

through the ducts, pipings and supports. Subproblem "BRNG"

analyzes the sinusoid for possible origin from a turbopump pump or

turbine bearing generating source. Subproblem "SUDO" analyzes the
sinusoid in question to determine if it may be identified as a
pseudo 3n or super pseudo 3n event.

If the sinusoid is not identified as one of the above five

types of known sources of sinusoid generation then the attributes

and sinusoid frequency values are written to a history file called
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"HISTORY.DAT". As the system matures, more knowledge will be

added to the knowledge base thus increasing the probability of

identifying more expected and unknown sinusoids.

The analysts use table 4.0 as a guideline to help them

identify operating windows for the turbopumps speed synchronous

frequency. A window is a range above and below the mean value in

which a known sinusoidal is expected to be found. The lower and

upper bound for the window is obtained from a shaft speed versus

power level graph. Because the new design turbopumps operate at

lower speeds the window is not symmetrical about the mean;

therefore, the lower bound is several hertz lower than expected.

Furthermore, the lower and upper bound are not a statistical value

but a guideline the analyst uses; therefore, ADDAMX, being an

expert system, uses this guideline as such. Of course the integer

multiples of the mean with the corresponding range shown on the

table are used to identify the different multiples of speed

synchronous frequency.

POWER HPOTP HPFTP LPFTP LPOTP

LEVEL % -20 +15 -20 +i0 -20 +15 -i0 +5

65 320 450 200 65

90 420 520 240 80

i00 455 580 250 85

104 470 600 260 87

109 495 620 270 90

Table 4.0: Turbopump generated synchronous frequency (hz) SSME

turbomachinery.

Table 4.1 is used to identify the bearing generated

frequencies for both the pump and turbine end. Note the numbers

are multiplied by the synchronous frequency for the respective

pump to obtain the frequency window. "SUDO" uses data for the

HPFTP 3 times speed synchronous speed plus or minus a specified

number to create unique windows for the pseudo 3n and super pseudo

3n event (see figure 4.4). Subproblems "SYNPWR", "FEDMLT", "BRNG"

and "SUDO" use the tabulated data to infer the turbopump

operation.

Both the interactive and batch module use an analysis

procedure. First a window is described using information in the

above tables. This window is compared to the sinusoid in

question. If the sinusoid falls within the window range then

ADDAMX can hypothesize a possible frequency generated source as

indicated by the respective known frequency window range.

Verification of the hypothesis is done by comparing data collected

from the surrounding accelerometers or other criteria to the

hypothesis. A voting scheme is used in the verification step.

Finally the results are printed to the screen or on to a hardcopy

plot. Figure 4.5 displays a flow chart of the procedure.

218



* LO__XX* * FUEL *

HIGH PRESSURE I LOW PRESSURE I HIGH PRESSURE LOW PRESSURE I

CLASS

BPFI

BPFO

BSF

FTF

TURBINE PUMP ITURBINE PUMP ITURBINE PUMP

END END IEND END IEND END

7.5(fsync)7.5 18.0 7.6 18.0 8.0

5.5 5.5 16.1 5.4 16.0 6.0
3.1 2.9 13.5 2.8 13.3 3.3

•42 .42 I .43 .42 I .43 .43

TURBINE PUMPI

END END I

8.0 "z.61
e.z 5.41
3.5 2.81

.43 .421

BPFI: Ball Pass Frequency Inner BPFO: Ball Pass Frequency Outer

BSF : Ball Spin Frequency FTF : Fundamental Train Frequenc_

Table 4.1: Bearing generated frequencies SSME turbomachinery

super pseudo 3n pseudo super

I I////////////I I////////////I I
3n-520 3n-220 3n-20 3n+lO 3n+210 3n+510

Figure 4.4: Pseudo and Super Pseudo 3n window range.

Figure 4.5: Analysis procedure.

5.0 CONCLUSION

The expert system ADDAMX identifies selected sinusoid

frequencies from Spectral Data graphs as speed frequencies and

harmonics from each respective turbopump, frequency feed through

from one turbopump to another, frequencies generated by the
turbopump bearings, pseudo and super pseudo 3N for the phase 2

HPFTP and finally electrical noise. ADDAMX does the analysis in

an interactive or batch mode and the results can be displayed on

the screen or hardcopy.

ADDAMX is in its infancy; however, it is helping to share the

knowledge from the expert and associates with other groups. It is

anticipated that the knowledge base will continue to grow to

handle additional types of anomalies and increase in its
capability through an organized effort from a dedicated department

group.
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ABSTRACT

Examples are both pervasive and necessary in the teaching of

new material. One of the more common types Is the Illustrative

example, used to clarify and Instantlate general statements. The

use of Illustrative examples In computer-based Instructional

systems to date, when they have been used at all, has been

general ly limited to some form of 'canned' text. This method has
the problem that as the system evolves, the canned supportive

material does not necessari ly follow along. This paper proposes a

method whereby the underlying domain knowledge Is represented
such that Illustrative examples may be generated on demand. This

method has the advantage that the generated example can follow

changes In the domain In addition to allowing automatic
customization of the example to the Individual.

I. Introduction

As the human race continues Its venture into space, the

supportive and operational systems necessary to accomplish this

goal become increasingly more complex. It is becoming ever harder

for an Individual to grasp the overall function of the systems

Involved and thus It Is becoming ever harder to effectively use

these systems. Owing to both the growing complexity and size of

our space effort, the need for efficient training systems I$

becoming critical. Computer based Instructional systems, while
still In various levels of development, hold out hope for Just

such efficiency of training due to their ability to tailor
themselves to individuals' needs and their ability to time-share

among many users [6,8]. In these Instructional systems, examples

will play an important role In Increasing the efficiency of

learning.

Examples have long been used In regular Instructional
materials to facilitate learning In a number of ways. Initial

examples introduce material and pique user Interest, thus
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motivating the learning experience. Application examples anchor

the learned material In a wider framework, thus Increasing

retention and understanding. Evidential examples and control

examples are used to support or test various Instructional

statements. Final ly, I I lustrative examples and counterexamples

are used to both clarify and define the limits of applicability

of general statements [2]. This paper Is specifically concerned

with the use and generation of these I I lustrative examples,

hereafter referred to as Just 'examples'

Current approaches to the use of examples In computer-based

Instructional systems Involve some form of presuppl led text to

determine what to say. These cover the range from 'canned' text

to templates to feature scripts [1]. Alternatively, the system

may contain an Internal expert to generate an example of a

'better way', as in some coaching systems [9]. The problem with

all of these systems, however, Is that they depend upon someone

deciding ahead of time what an appropriate example Is for some

given concept. In some domains, such as mathematics, this Is

adequate. In other domains, such as spacecraft or computer system

operations, the abi I ity to tailor the example to the user and his

working environment Is potentially more useful. This paper

proposes Just such a method.

This method of example generation uses a knowledge

representation scheme based upon Sowa's conceptual graph theory.

In this scheme there exists what Sowa cal Is a semantic net,

similar to a cross-I inked hierarchy, In which the basic

interrelationships among the primitive concepts in the domain Is

captured. Domain knowledge about higher level concepts and actual

entitles Is represented by conceptual graphs, simi lar to Schank's

conceptual dependency theory representation, but with a

potential ly unlimited set of relations [5,7]. To generate an

example from this domain representation, the concept to be

exempl ified Is also represented as a conceptual graph with

various attributes and parameters. This graph is then joined over

the domain representation to fill In the missing pieces, either

through ful I or partial matching on existing knowledge or

generation based upon domain first principles.

The most appl Icable related research is that of Edwina

Rlssland on constrained example generation (CEG), in which an

example is generated from an examples knowledge base using

prespeclfied constraints. CEG lists three methods of

'generation'; retrieval, modification and construction. In

retrieval and modification, pre-existing examples are used,

either directly or with modification, that have been precompl led

by the system bui Ider. It Is only In the construction phase that

an example is actually generated from domain first principles,

and even here the construction may instead be done by combining

existing examples to create a larger example. The work on CEG is

currently focused only on the retrieval and modification aspects

of this method and has yet to address the construction aspect of

generation from domain first principles [4]. This paper presents

a method which Includes that aspect.
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2 Methodology

A typical situation where Instructional systems would be

useful in space related operations involves the learning of a

command and control system. Learning these systems is similar to

learning a computer operating system. There are numerous commands

with various effects, possibly different In different contexts,

and during the use of these commands the user must have an

understanding of the overall view of things. Because of this

similarity, and for practical testing reasons, this paper

presents the proposed method In the domain of Instruction about

the UNIX operating system.

Appendix A shows a portion of the semantic net of basic

domain primitive concepts. These form a framework for talking

about types of objects. Note that some of these types, such as

entity and Information, are domain Independent whi le others, such

as command, are domain dependent.

Appendix B shows portions of the set of conceptual graphs

comprising the extensional knowledge about the domain [3] and the

user environment. It Is there that methods would be represented

for obtaining Information about actual flies and for interpreting

that Information, about a directory for example.

The best way to I I lustrate the proposed method Is, of

course, with some examples. In these examples the concept to be

exempl ified is first presented textual ly as might be composed by

an Instructional designer. Next Is presented a conceptual graph

for that concept, followed by a description of the processing

Involved and the resultant exemplifying conceptual graph.

Example 1

"The UNIX Programmer's Manual is kept on-I ine. You can

use the 'man' command to print the manual pages for a system
command."

COMMAND

COMMAND-NAME: man

COMMAND-ARGUMENT: _command-name

This conceptual graph (CG) would be matched on the command

name field to the CG for the 'man' command (refer to Appendix B).

Since no options are specified In the example CG, they would not

be Included in the match result. This resultant CG would specify

that the command argument must be In the Intersection of the set

of manual titles and the set of command names. An entry from that

Intersection would be randomly chosen and Inserted into the

command argument field resulting in the following exemplifying

graph:

COMMAND

COMMAND-NAME: man

COMMAND-ARGUMENT: sort

which an English generator would render as "man sort"
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Example 2

The previous

compl Icated example
meta-characters.

example was relatively simple. A more
Involves the explanation of the use of shell

"The * can be used in conjunction with ?, as In
match multiple fl lenames."

??b = , to

SET

SET-SIZE: >=2

SET-ELEMENTS:

FILE-NAME

LENGTH: >=3

PATTERN: ??b =

First we match this CG with the FILE-NAME CG in the semantic

net. This sets the length field to 3-14. At this point we can

either match against the user environment or generate fl lenames

directly. If we choose to match against the user environment, we
would call a routine to return all fl lenames in the user's

current directory and attempt to match those against the

requirements. If we matched enough of those fi lenames, we would

return that set. Alternatively, generating the fl lenames would
involve Instantlatlng patterns that met both the length and

pattern constraints. In either case an actor CG for matching
would be Invoked which knew about character patterns and
meta-characters.

A generated result (compressed for brevity) might be

SET

SET-SIZE: 4

SET-ELEMENTS:

FILE-NAME: { aab, 23bso, aabredor, debar }

3. Conclusions and Further Directions

This outlines the concept of system-generated examples and a

method for achieving them. The present work has focused only on

the representational and generational problems. Before generated
examples can be ful ly used In computer-based instructional

systems, some manner of generating English from the resultant

conceptual graph Is also needed. Additionally, It would be

convenient to have a parser generate the Initial conceptual graph

from the English statement of the concept to be exemplified.
However, these are separate and further areas for research. That

examples are useful in regular Instructional materials cannot be

denied. Further work will allow them to benefit computer-based
Instructional systems as well.
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APPENDIX A - Intensional Knowledge

This Is a slmpl Ifled representation showing only the concept

types and not the relations linking the concepts involved. All

relation types in this example are characteristics and are

indicated by Indentation.

ENTITY • (Is a subtype of) UST (the universal subtype)

Includes physical objects as well as abstractions

INFORMATION • UST Anything that can be communicated

FILE-NAME • ENTITY, INFORMATION

LENGTH: 1-14

PATTERN: { valid-characters }

COMMAND-NAME • FILE-NAME

COMMAND-DESCRIPTION • TEXT

COMMAND-OPTION • INFORMATION

OPTION-LETTER
OPTION-DESCRIPTION

OPTION-ARGUMENT

COMMAND • ENTITY
COMMAND-NAME

COMMAND-OPTION
COMMAND-ARGUMENT

COMMAND-DESCRIPTION

The entity used to access a fi

Performs an operation

e

APPENDIX B - Extensional Knowledge

COMMAND

COMMAND-NAME:
LENGTH: 3

PATTERN: man

COMMAND-DESCRIPTION: "finds Information by keywords; prints

selected manual pages"

COMMAND-OPTION: {

OPTION-LETTER: k

-DESCRIPTION: "prints a 1-1 ine synopsis of each
manual section whose I istlng

in the table of contents

contains one of the keywords"

-ARGUMENT: { keywords },

OPTION-LETTER: t
-DESCRIPTION: "forces use of TROFF format"

}
COMMAND-ARGUMENT: { manual-titles }

manual-titles: {at,awk,cat,cc .... Is,man .... sort,tal I,wc }
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Abstract: This paper discusses the problems of designing practical

tools'to aid the knowledge engineer and general applications used

in performing knowledge acquisition tasks. At issue for the

knowledge engineer are several problems and misconceptions of

knowledge engineering and knowledge-based systems development.

The authors propose a strategy for removing some of those

problems, presenting a particular approach we have developed for

one class of knowledge acquisition problem characterized by

situations where acquisition and transformation of domain

expertise are often the bottleneck in systems development. The

focus at ICF/Phase Linear has been upon the processing of text-

based source materials through a software tool designed in-house,

the Knowledge Acquisition Module (KAM). The authors go on to

discuss how the tool and the underlying software engineering

principles can be extended to provide a flexible set of tools that

allow the application specialist to build highly-customized

knowledge-based applications.

Introduction

There are some misconceptions or misrepresentations regarding

what knowledge engineering can or should do. These confusions

result in a failure to make the best use of computer technology

and artificial intelligence-based techniques for building

knowledge-based systems that are reliable and effective for real-

world applications. The knowledge engineering process is

typically characterized as follows:

(i) There is a body of expert knowledge "out there" which is

in the minds of certain experts (or what they have

produced -documents, automated systems, etc.).

(2) This knowledge can be codified or summarized into a

formal representation which can then be used by an

automated system.

(3) The knowledge engineer must "obtain" that body of

knowledge and transform it into the ideal type of

symbolic representation - discovering the ideal

formalism is a goal that must be attained.

(4) The symbolic representation must be implemented into an

expert system where there is a mapping of the symbolic

representation into some form of code.
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Once built the expert system should perform its assigned

tasks in a manner that is predictably similar to the way

a human expert would carry out those tasks.

A fundamental misconception is that a comprehensive body of

knowledge exists in the first place which can be codified into a

formal representation. There is a tendency to think of knowledge

as objects, facts as being entities that can be bounded and

enclosed within the descriptive framework of a given type of

formalism. There is also a tendency to think of the mapping

problem (expert knowledge into symbolic form) as a task that has a

singular and finite answer. However, putting automated systems

aside and considering for a moment only human exchanges of

information and learning, it is clear that acquisition and

transfer of knowledge is not a linear sequence or an early

codifiable phenomenon. The expert-novice interchange is highly

iterative and interpolative. By this it is meant that the

exchanges are more like conversations rather than data transfers

as we normally think of them. [I] As with conversations, the

implied background knowledge of both persons in the exchange

becomes highly significant for the correct interpretation of what

is spoken by both (all) participants.

There must be a high level of dialogue, particularly

interrogation in both directions between expert and novice. This

"handshaking", as it were, is what enables both participants to

know that the other is understanding what is being communicated.

Such questioning enables the novice to make clear what is
understood and what is unclear and what is his or her context of

understanding; it also empowers the expert with knowledge about

the communication process so that he can emphasize or clarify

certain facts, rules, and relationships. In a knowledge

acquisition activity, particularly between engineer and expert,

frequent questioning and clarification is the key to making sure

that both are "speaking the same language." Of course, this often.

leads to a increased volume of written and verbal material to be

analyzed and deciphered; thus the need for automating parts of

those processes.

The knowledge engineer acts as both the go-between for an

expert and an automated system and also as the designer of that

computer-based product and must recognize this dual nature to this

work. The knowledge engineer must take the lead in focusing the

knowledge acquisition process so that it serves to not only

provide substantive expressions of the expert's knowledge but

information that will help in designing the most appropriate

system structures for using that knowledge in the automated

application. The knowledge engineer is responsible in a way

unlike the typical apprentice to the expert in that what is

relevant or useable information must be defined. Also the system

design must be modified in response to new expert information that

is gained through the interviews, dialogues and other acquisition

activities.
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It is critical to keep the knowledge engineer active at every

level of the acquisition process, from interfacing with the

experts to formulating a computer-based representation for what

was obtained. This provides the broad-context element of control

which can take into account not only the expert source material

currently being processed (e.g., codified) but also the knowledge

which may not be coded into any automated system and which may not

at the moment seem directly relevant but which can become relevant

in the future. But if the knowledge engineer is to be actively

involved in the entire acquisition-representation process, the

tools that will help carry the load and to perform those tasks in

a reasonable period of time must be available.

In brief, the knowledge engineer needs tools that can

expedite these tasks but not perform them without active

participation and control. These tools must enhance productivity

and correctness without adding to the work load, rather than tools

which replace entire segments of the knowledge acquisition

process. If the knowledge engineer is taken out of the loop, so

to speak, then the opportunity to bring in the broad-context of

both acquired or implicit expert knowledge as well as general

common-sense knowledge is reduced. Moreover, the task of

identifying situations where a highly-automated module has

generated something in need of correction or has omitted

something, and the task of making those corrections or

modifications "after the fact", may be so time-consuming and

tedious that the value of the initial automation process is

negated.

One insufficiently-addressed aspect of the knowledge

engineering process which can be significantly improved and which

has been the focus of ICF/Phase Linear automation efforts concerns

the extraction of information imbedded in free-format source

materials (e.g., texts, transcripts) and the transformation of

such knowledge into useable formal representations. The lauter

may be in the syntax of the knowledge engineer's application

system under development or in some intermediate form which the

knowledge engineer may have adopted. There are problems not only

in transforming loosely-formed knowledge into a codified symbolic

representation but also in handling voluminous and diverse-format

database records, text, interview transcripts, and other

digitizable material. The problems in acquiring the knowledge

properly also affect the selection and formalization of a

sufficiently robust representational scheme to be used in the

actual expert system, planner, scheduler or other application.

The knowledge engineer needs to have fluent and easy access to the

breadth and depth of relevant source material to effectively

design data structures that will store facts, rules, relations and

to design or select the reasoning mechanisms that will manipulate

the knowledge bases.

In its project management and consulting work, ICF/Phase

Linear staff have frequently found situations where the volume of

interview transcripts, background texts, and reference materials,
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particularly manuals and project specification documents, posed
the major roadblock to establishing even an elementary knowledge
base for an application. This has been particularly true for such
engineering applications as autonomousunderwater and aerospace
vehicle control, mission planning, fault diagnosis and
maintenance. The approach ICF/Phase Linear has been developing
consists of building relatively simple software tools which to
reduce the amount of material which the engineer must handle. Such
tools also help to create intermediary data structures that can be
directly applied toward the next phases of the knowledge
engineering process such as incorporation into relations, facts,
and rules in a knowledge base. The goal has been to allow the
knowledge engineer to movequickly through large and difficult
masses of data and to provide the ability to create new data
structures that are more condensed, focused and easily managed,
primarily through rapid browsing and editing. The result is that
the engineer can be more involved in the full knowledge
acquisition process without being overwhelmedby time-consuming
operations.

MODIFY

EXTRACTION
RULES

SOURCE
TEXT

I

L'PARAGRAPH

UNITS

CREATE

p CLUSTERS

t I

TEXT

FORMS

DISPLAY/

BROWSE

12 " I -l" S,;EEXTRACT

PATTERNS I TO
, I • FILE

II qSYMBOLIC /_//

I EXPRESSIONS |
\ , I •

CBROWSE KBASE 5YS

EXTRACTS STRUCTURES

KAM FUNCTIONAL STRUCTURE

KAM or the Knowledge Acquisition Module has been implemented

as the kernel tool in a family of such expediter tools. As such,

it is a concrete example of how some of the strategies outlined

above can be feasibly implemented in a low-cost software package

running on low-cost general-purpose hardware such as the PC family

of microcomputers. The figure above illustrates the basic KAM

functional structure.

In its first phase KAM has been built to handle source files

of text data but it can be extended to work with non-text data as
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well. Most applications for this type of program will involve

text but in a variety of different formats besides standard

paragraph-oriented text files. The primary features KAM provides

are:

The ability to rapidly form and browse through clusters

or subsets of text arranged according to topics (the

latter being specified using strings and keywords but

also logical relationships between words, presence of

synonyms and morphemes).

The ability to extract elements of text on the

sentential level which match pattern templates (rules

that are defaults or established by the user) and to

browse through these extracted patterns.

The reconstruction of extracted text elements into both

simple English-like and code-like user-specified

representational forms which can be used directly or

after editing in application systems.

The ability to browse quickly among extracts and source
text and to make edits to extracts which are

automatically reflected in the other representational

forms of the extracts.

The ability to work with multiple source files and

extract data sets and to combine data produce from

different sources.

The ability to automatically generate data structures

from extracts according to pre-specified syntax rules

such that the output data sets can be input into the

knowledge bases of various existing applications.

KAM is currently implemented in LISP on a PC/AT. It has been

developed as a prototype following an initial proof-of-concept

version built on a Symbolics workstation, and further extensions

and refinements of the system will be oriented toward

deliverability on a variety of hardware besides the PC/AT.

While KAM is designed to be used in a standalone capacity for

extracting and transforming text, it can also be incorporated,

modular-fashion, into a more comprehensive workstation environment

that provides the user with the capability of defining and using

ad hoc "knowledge-object" definitions - software structures which

specify different classes and types of data that the user may

discover a need to use during the knowledge acquisition life

cycle. An example of such a definition is one called a TopicDef;

it is a frame-like structure that specifies the different rules

and functions to be employed by KAM and related applications for

determining whether or not a given piece of text should be

considered as bearing reference to a topic or not. The TopicDef

instructs KAM as to how the user conceives of the topic and how
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the system should proceed in its examination of texts in order to
judge its relevance or not.

Only brief mention has been made of the fact that there is a
broad class of straightforward software tools for the knowledge
acquisition process and that like KAM, they can be developed into
standalone units or integrated to form a workstation environment.
Such an environment is the application user's equivalent of a
programmer's development environment as is found on a variety of
machines, the most obvious perhaps being UNIX on conventional
hardware and the Symbolics LISP machines. By providing more
fluidity and convenience at the workstation, the knowledge
engineer can address the acquisition problem and increase
productivity in much the same fashion as the AI programmer can
more effectively grapple with program design and prototyping
issues through well-established features like incremental
compilation, run-time debugging and editor-level evaluations. The
behaviors of programming and knowledge acquisition are not that
dissimilar. It seemsappropriate to expand the tools which have
proven successful in the programming arena toward time-consuming,
productivity-draining problems in critical application areas like
knowledge acquisition.

[i] A source for muchof the theoretical foundation for concepts
expressed in this paper is: Winograd, T. & Flores, F.,
"Understanding Computers and Cognition", Addison-Wesley, Reading
MA, 1987
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I. ABSTRACT

This paper describes a methodology for Automatic Mathematical

modeling. The major objective is to create a very friendly

environment for engineers to design, maintain and verify their

model and also automatically convert the Mathematical model into

FORTRAN code for conventional computation.

A demonstration program was designed for modeling the Space

Shuttle Main Engine Simulation Mathematic Model called

Propulsion System Automatic Modeling (PSAM). PSAM is written

in LISP and MACSYMA and runs on a Symbolics 367Z Lisp Machine.

PSAM provides a very friendly and well organized environment

for engineers to build a knowledge base for base equations and

general information. PSAM contains an initial set of component

process elements for the Space Shuttle Main Engine Simulation and

a questionnaire that allows the engineer to answer a set of

questions to specify a particular model. PSAM is then able to

automatically generate the model and FORTRAN code. A future

goal is to download the FORTRAN code to the VAX/VMS system for

conventional computation.

II. INTRODUCTION

Mathematical Modeling for Space Application Simulationproject is

a very complicated process which includes Analysis, Design, and

the Generation of complex equations. Generally the model will

require several modification before it will match a real system.

Historically the modifications have been time consuming and a

fertile source of error.
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The use of Artificial Intelligence techniques has shown that this

process can be simplified. This paper describes a methodology for

organizing and generating the model automatically.

III. EXPERT USER INTERFACE

and

AUTOMATIC KNOWLEDGE BASE GENERATION

An Artificial Intelligence system can provide a very friendly work

environment for engineers. Through PSAM's questionnaire, the

system collects the necessary information and generates the

knowledge base automatically.

The knowledge base includes: (i) An information base in frames and

(2) Generic equations for the project.

IV. SOFTWARE TOOLS

and

AUTOMATIC EQUATION AND CODE GENERATION

There are a number of tools available for equation derivation

and FORTRAN code generation. The one we choose to use is "MACSYMA"

LISP was the language I used basically for user interface and

knowledge base generation. I also used LISP for generating

"MACSYMA" code. The MACSYMA code generates the equations auto-

matically and at the same time FORTRANcode will also be generated

automatically and saved into the disk file for future integration.

The future goal is to integrate the FORTRAN code we generated and

download to the VAX/VMS system for conventional computation.

V. MAINTAINING AND VERIFYING

One of the most difficult problems in software today is the

verification and maintenance of existing programs, especially

programs built up our time with many programmers involved.

This is particularly true for simulation programs. The traditional

way of modifying simulation programs by rebuilding the model and

recoding the model had a potential source of many errors.
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The automatic system can eliminates most of these problems. The

proce-dure become much simpler which makes it easy for the user

to maintain and modify the model and program directly.

VI. EXAMPLE

A demonstration program was designed for modeling the Space Shuttle

Main Engine Simulation Mathematic Model called Propulsion System

Automatic Modeling (PSAM). PSAM is written in LISP and MACSYMA

and runs on a Symbolics 3670 LISP machine.

The design goals for PSAM were to develop automatic modeling skills

for Propulsion System, and other scientific and Engineering applica-

tions. We used the old Engine Model for an example to study.

PSAM includes the following features:

(i). Friendly user interface.

(2). Automatic Knowledge Base generation and

(3). Automatic Equation and Coding generation.

The Space Shuttle Main Engine Simulation model was built up from

the component process elements and their combination into the sub-

programs.

The component process elements are Pump,Hot gas turbine, Hydraulic

turbine, Turbopump, Combustor, Valve, Incompressible propellant

flow, Injector volume with priming for start, Hot gas heat transfer

and Regen cooling flow. The subprograms are Fuel, Oxidizer and Hot
Gas.

There are two types of information for a PSAM knowledge base. One

is the component process elements generic equations and the other

is the information base for the combination of the Space Shuttle

Main Engine model subprograms and component process elements.

The Expert System collects the detailed requirements and generates

the sets of specific equations for the component process elements

and subprograms.

PSAM has the ability to:

(i) Create or maintain the Knowledge base

(2) Load different knowledge base

(3) Automatically generate Equations

(4) Output generated Equation or FORTRAN code to Disk file or

option for print out of the Laser printer.
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Example for input information user interface for the component

process element Pump knowledge base.

1. Low Pressure Fuel Pump

2. High Pressure Fuel Pump
B. Low Pressure Oxidizer Pump

_. High Pressure Oxidizer Pump
Generic Equations

F - Bi o [ OH S] _ Flow variable
P - Ps + Bj m (5)^2 o Tp(F) ; Total pressure
R _ Bk u (S)^2 s Tr(F) ; Torque

• inA3

• Psie
• in-lb

Llap Listener I

ORIGINAL PAGE IS

OF POOR QUAI_
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(Deframe Ffpl
(Class PUMP)
(Unit "flow-variable" )
(Nomenclature "Low Pressure Fuel Pump Flow variable")
(Input-parameter BII DWfdl Sfl))

(Deframe Ffp2
(Class PUMP)
(Unit "flow-variable" )
(Nomenclature "High Pressure Fuel Pump Flow Variable")
(Input-parameter BI8 DWfd2 Sf2))

(Deframe Fdpl
(Class PUMP)
(Unit "flow-variable")
(Nomenclature "Low Pressure Oxidizer Pump Flow variable")
(Input-parameter B27 DWmov+DWop3Sol))

(Deframe Fop2
(Class PUMP)
(Unit "flow-variable" )
(Nomenclature "High Pressure Oxidizer Pump Flow variable")
(Input-parameter B39 DWmov+DWotl+DWop3So2) )

(Deframe Pfdl
(Class PUMP)
(Unit "total-pressure")
(Nomenclature "Low Pressure Fuel Pump Discharge Total pressure")
(Input-parameter Pfs BI2 Sfl Tpfpl))

(Deframe Pfd2
(Class PUMP)

' (Unit "total-pressure")
(Nomenclature "High Pressure Fuel Pump Total Pressure")
(Input-parameter Pfdl BI9 Sf2 Tpfp2))

(Deframe Podl
(Class PUMP)
(Unit "total-pressure" )
(Nomenclature "Low Pressure Oxidizer Pump Total Pressure")
(Input-parameter Pos B28 SZI TpopI))

(De frame Pod2
(Class PUMP)
(Unit "total-pressure")
(Nomenclature "High Pressure Oxidizer Pump Total Pressure")
(Input-parameter Podl B4Z So2 Tpop2))

(Deframe Rfpl
(Class PUMP)
(Unit "torque")
(Nomenclature "Low Pressure Fuel Pump "torque"")
(Input-parameter BI3 Sfl Trfpl))

(Deframe Rfp2
(Class PUMP)
(Unit "torque")
(Nomenclature "High Pressure Fuel Pump "torque"")
(Input-parameter B20 Sf2 Trfp2))

(Deframe Ropl
(Class PUMP)
(Unit "torque")
(Nomenclature "LOw Pressure Oxidizer Pump "torque"")
(Input-parameter B34 Sol Tropl))
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PSAMGeneric equations:

********************************

"Pump Flow Variable",

PFV(F, B, DW,S) : =
Block ( F = B * (DW /S));

"Pump Total Pressure",

PTP (PP, P, B, S, T) :=

Block ( PP = P + B * (S)^2 * T);

"Pump Torque" $

PT (R, B,S, T) :=

Block ( R = B * (S)^2 * T);

********************************

"Turbine Torque" $

TT(R, B, P, *) :=

Block ( R = B * P * T);

"Turbine Speed Parameter",

TSP(M,B, S, T) :=

Block ( S = B * S / (T^(I/2)));

"Turbine Weight Flowrate"$

TWF(DW, B, dP, r) :=

Block ( DW = (B * (dP) * r)^(i/2));

"**********TURBOPUMP SPEED******* ",

"TurboPump Speed",

TPS (S, B, Tq, SZ) :=

Block ( S = B * 'Integrate (Tq,t) + SZ);

*****************************

"Valve Area",

VA(A, Ab,T,Th,Thb):=

Block ( A = Ab * (T * Th / Thb));
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"Valve Total Pressure Inlet Total"$

VTPIT (P, Pi, RF, D*, Rho) :=

Block ( P = Pi- RF * (DW)^2 /Rho);

"Valve Total Pressure Inlet Static"$

VTPIS (PP, P, DW,A, Rho) :=

Block ( PP = P - DW^2 /(772.8 * A^2 * Rho));

•*Valve Delta Total Pressure"$

VDTP (DP, B, Rhob, Rho, DW, A, Ab, RF) :=

Block ( DP = B * (*hoblPao)*(Dwl(Al ))A2- *F * DW I o);

************************** ..$

"Fuel Flow" $

FF(DWf,Bi,P9, P, Bj, R, DWZ) :=

Block ( DWf = B * 'integrate (((P9 - P - (Bi / R)) * DWf^2),t) + DWZ);

"Oxidizer Flow" $

OF (DWo, Bk, Ppos, P, BI, DW0, A, Ab, Bm, DWi) :=

Block( DWo = Bk * 'integrate ((Ppos - p - B1 * (DWo /(A/Ab))^2 -

Bm*(DWi)^2),t) + DW0);

"Variable in injector Priming function, Dimensionless"$

VIPF (E, Bh, DWo, DWi, EZ ) :=

Block( E = Bh * 'integrate ((DWo - DWi),t) + EZ);

"Weight Flowrate Injector"$

WFI(DWi,DWo,Eo):=

Block( DWi = DWo * Eo);

**********************************

"Combuster Total Pressure"$

CTP(P,Bi,DWI,DW2,Bj,DW3,PZ):=Block( P = Bi * 'integrate (( DWI + DW2 -Bj *

DW3),t) + pZ);

"Combuster Fuel Weight Flowrate"$
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CFWF(F,DW2,DW):=Block( F = DW2 / (DWI + DW2));

"Combuster Temperature" $

CT(T,R,F,Bk,T9):=Block ( T = R(F) + Bk * T9);

"**********COOLING ELEMENT**********"$

"Cooling Element Total Pressure"$

CETP (P, B, DQwl, DQw2, H3, DWi, H, DW, PZ ) :=

Block( P = B * 'integrate((DQwl + DQw2 + H3 * DWi - H * DW),t) + PZ);

"Cooling Element Specific Enthalpy"$

CESE(H,B,T):=Block( H = B * T);

"Cooling Element Weight Flowrate Main Chamber Heat Exchanger"$

CEWFM (DW, B i, P, P 5, B j, R5, DW, DWO ) :=

Block( DW = Bi * 'integrate ((P - P5 - (Bj / R5) * DW^2),t) +DW0);

"Cooling Element Density"$

CED(R, B, DWi, DW, R0) :=

Block( R = B * 'integrate ((DWi - DW),t) + R0);

"Cooling Element Temperature"$

CET (T, B, P, R) :=

Block( T = B * ( P / R));

"Cooling Element Heat Transfer Rate Hot Gas Wall"$

CEHTRHGW(DQwl, B, T, Twl, DWi) :=

Block( DQwl = B * (1.0 + 0.002 * T) * (DWi)A0.8);

"Cooling Element Heat Transfer Rate Ambient Thrust Chamber"$

CEHTRAT (DQw2, B, Twl, T, DWi ) :=

Block( DQw2 = B * (1.0 + 0.002 * T) * (Tw2 - T) * DWi^0.8);

"Cooling Element Heat Transfer Rate TC"$

CEHTR (DQtc, B, Tc, Twl, DWcn) :=

Block( DQtc = B * (Tc - Twl) * DWcn^0.8);

"Cooling Element Hot Gas Wall Temperature"$

CEHGWT (T, DQtc, DQwl, TZ ) :=

Block( T = B * 'integrate ((DQtc - DQwl) * temp(t),t) + T0);
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The Macsyma code that psam generates which will call the Generic

equation function blocks and also generates the equations and
FORTRAN code for the certain element.

fpump():=block(writefile("al:>psam>equation>pump-equation."),

display(PT(ROPI,B34,SOI,TROPI)),

display(PT(RFP2,B2Z,SF2,TRFP2)),

dispIay(PT(RFPI,BI3,SFI,TRFPI)),

dispIay(PTP(POD2,PODI,B4Z,SO2,TPOP2)),

dispIay(PTP(PODI,POS,B28, SZI,TPOPI)),

dispIay(PTP(PFD2,PFDI,BI9, SF2,TPFP2)),

dispIay(PTP(PFDI,PFS,BI2,SFI,TPFPI)),

dispIay(PFV(FOP2,B39, DWMOV+DWOTI+DWOP3,SO2)),

dispIay(PFV(FDPI,B27,DWMOV+DWOP3,SOI)),

dispIay(PFV(FFP2,BI8, DWFD2,SF2)),

dispIay(PFV(FFPI,BII,DWFDI,SFI)),

closefile(),

writefile("al:>psam>fortran>pump.for"),

fortran(PT(ROPl,B34,SOi,TROPl)),

fortran(PT(RFP2,B2Z,SF2,TRFP2)),

fortran(PT(RFPI,BI3,SFI,TRFPI)),

fortran(PTP(POD2,PODI,B40,SO2,TPOP2)),

fortran(PTP(PODl, POS, B28, SZI, TPOPI) ),

fortran(PTP(PFD2, PFDI, BI9, SF2, TPFP2) ),

fortran(PTP (PFDI, PFS, BI2, SFI, TPFPI) ),

fortran(PFV(FOP2,B39,DWMOV+DWOTI+DWOP3,SO2)),

fortran(PFV(FDPI,B27,DWMOV+DWOP3,SOI)),

fortran(PFV(FFP2,BI8, DWFD2,SF2)),

fortran(PFV(FFPI,BII,DWFDI,SFI)),

closefile());

2

ROPI = B34 SO1 TROPI

2

RFP2 = B2Z SF2 TRFP2

2

RFPI = BI3 SFI TRFPI

2

POD2 = B4Z SO2 TPOP2 + POD1

2

POD1 = B28 SZI TPOPI + POS

2

PFD2 = BI9 SF2 TPFP2 + PFDI

2

PFDI = BI2 SFI TPFPI + PFS
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B39 (DWOTI + DWOP3+ DWMOV)
FOP2 = -

SO2

FDPI =
B27 (DWOP3+ DWMOV)

SOl

FFP2 =

BI8 DWFD2

SF2

FFPI =

BII DWFDI

SFI

ROPI = B34*SOI**2*TROPI

RFP2 = B20*SF2**2*TRFP2

RFPI = BI3*SFI**2*TRFPI

POD2 = B4Z*SO2**2*TPOP2+PODI

POD1 = B28*SZI**2*TPOPI+POS

PFD2 = BI9*SF2**2*TPFP2+PFDI

PFDI = BI2*SFI**2*TPFPI+PFS

FOP2 = B39" (DWOTI+DWOP3+DWMOV)/SO2

FDPI = B27*(DWOP3+DWMOV)/SO1

FFP2 = BI8*DWFD2/SF2

FFPI = BII*DWFDI/SFI

The sets or the FORTRAN code will then be integrated into a

completed compiled SSME program and downloaded to VAX/VMS system

for conventional computation.
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ABSTRACT

This paper presents the development of a simulation assistant for

modeling discrete event processes. Included in this paper are an overview

of the system, a description of the simulation generators, and a sample

process generated using the simulation assistant.

INTRODUCTION

Numerous simulation languages exist for modeling discrete event

processes and have now been ported to microcomputers (Pegden 1985 and
Minuteman 1986}. Graphic and animation capabilities have been added to many

of these languages to assist the users build models and evaluate the
simulation results.

However, with all these languages and added features, the user is still

plagued with learning the simulation language which can be rather time

consuming, especially if a complex system is being modeled. Furthermore,
the time to construct and then to validate the simulation model is always

greater than originally anticipated.

One approach to minimize the time requirement is to use pre-defined

macros that describe various common processes or operations in a system.
The literature recently has contained several approaches to developing and

using these macros or simulation generators. For example, a simulation

generator has been developed that translates the characteristics of a

Flexible Manufacturing System (FMS) into a simulation model using SIMAN
(Haddock 1987).

Another example is a ruled based expert system that assists the modeler

in constructing simulation models (Khoshnevis 1986}. The expert system
automatically generates the corresponding SLAM simulation code. The icons

used in this system are very similar to those in GPSS and SIMAN.

A Natural Language Interface (NLI) for an electronics assembly domain

has also been developed that automatically generates SIMAN code from user
defined text (Ford 1986}. This NLI uses a Symbolics 3670 processor and

presently has a limited dictionary.

A set of simulation generators has also been developed for simulating

manufacturing systems (Schroer 1987). These generators are written in

GPSS/PC and can be linked together through a GPSS main program.
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SYSTEMOVERVIEW

Several simulation generators have been developed for modeling
manufacturing processes (Tseng 1987). These simulators have greatly
expedited the modeling process. The next step is to develop a more user
friendly interface, or simulation assistant, between the modeler and the
actual simulation language. Such a simulation assistant should reduce the
user's need to know the details of the simulation language and reduce the
time to construct and validate the model. The end result should be
increased user productivity.

Figure 1 outlines a system schematic for the simulation assistant
currently under development. The user sits at a Symbolics 3620 processor
and, based on the prompts from the simulation assistant, defines the process
or the model. The simulation assistant is written in Symbolics' Common
Lisp.

Oncethe user has defined the process to be simulated, the simulation
assistant automatically generates the corresponding GPSSsimulation code of
the process. The simulation assistant also calls on the library of
simulation generators in generating the GPSScode.

The Symbolics 3620 is interfaced to a 3670 file server which is
interfaced, via Ethernet, to a VAX785. Resident of the VAX is the GPSS
simulation system. The user then inputs the necessary run statements, the
model is executed and the results printed. Currently, the VAXinterface is
not operational. Instead, the GPSScode that is generated on the Symbolics
3620 is re-entered into an IBMAT which has resident the GPSSsystem. The
user then inputs the run commandson the AT to execute the model.

Userdefines I
problemprompte(l___J
by simulation -I
assistant I,

Stmuletlon
essiste_t

GP,S,S
simulation
generators

OPS.S
simulation
language

___ Automatically
generated

OP&Scode

Symbollcs
3620 Vex785

Model
results

t1_ User inputs

run parameters

Figure I. System overview
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SIMULATIONGENERATORS

Three simulation generators have been developed:

generator, a manufacturing cell generator, and

generator. Each generator consists of a GPSS macro

1987).

an assembly station

an inventory transfer

or subroutine (Tseng

Figure 2 is a typical assembly station. The generator operates as

follows. Items wait in a queue until the station becomes available. The
item then seizes the station and waits until item A is available at stock

point A. An amount of time is then simulated while item A is assembled to

item B resulting in item C. If stock point A is empty, a signal is sent to

the inventory transfer generator to move the empty cart to the manufacturing

cell. The manufacturing cell then makes the required items for the cart.

Another signal is sent to the inventory transfer generator to return the
full cart back to the corresponding assembly station. This method of

inventory control is commonly called the pull mode. If the assembly station
is operated in the push inventory control mode, the items at stock point A

are replenished at predefined intervals.

item A at

stock point A

station 1

tlme to assemble

Item A to item B

Item C

Figure 2. Typical assembly station

Figure 3 is a typical manufacturing cell. The generator operates as
follows. Item D, or raw material D, is used to manufacture item E.
Likewise, item F is used to make item G. An amount of time is then

simulated to make an item. The finished items are stored in stock points E

and G. Each stock point contains a defined inventory or carts with a fixed

cart capacity. This output can go to either another manufacturing cell or

an assembly station. The inventory at the stock points D and F can be raw

material or items from another manufacturing cell.

Item D at Item E at

stock poln_ _oint E

"_ IManufacturing I
--- Icell 2

Item F at _'_ __tem G at

stock point F times to make items E and G stock point G
from Items D and F

Figure 3 Typical manufacturing cell
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SIMULATION ASSISTANT

An example of a typical process, which could translate to a space

manufacturing task, is given in Figure 4 and consists of two assembly
stations and one manufacturing cell. The following constraints are placed

on the process: one inventory transfer generator for all item movement; a

pull inventory control is imposed for items B and D; and a push inventory
control is imposed for items A and C.

Item X

Assemblystation I

C

stock

point A

item Y

Assembly
station 2

stockpoint B stockpoint D

itemJ
v

stock

point B

stock

stock pointD
point C

Figure 4 Typical manufacturing process

Figure 5 is a listing from the Symbolics 3620 screen showing a porLion
of the prompts from the simulation assistant and the corresponding user

response. The screen consists of two windows. The right window contains
various subwindows and options that the user selects via the mouse. Once

the selection is made, the left window prompts the user for specific data

that are used to construct a model of the process and to provide data for

the simulation generators.

Several of the various subwindows are given in Figure 6. The first

subwindow allows the user to select the type of distribution for the

assembly time at a station. The current options are either exponential or
normal. After the user selects the appropriate distribution, the user

enters the mean time and standard deviation in the left window. The second

subwindow allows the user to select the method of inventory, either push or

pull. Once the method is selected, the user enters the amount of inventory
at the various stock points.

CONCLUSIONS

In summary, a simulation assistant is an effective method of rapidly

developing discrete event simulation models with minimum knowledge of the

simulation language. An expanded set of simulation generators are necessary

for modeling more complex processes. However, it is difficult to define

these general purpose generators and to then link these generators to the
simulation assistant. Considerable more work is required to make the

simulation assistant more robust.
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Oomand: (mumple-processl
Numeof line: _IN

Numberof stations: 2

Nean arrival time: ](_

Nameof inventory part required at station l: B

Heax assembly time: 100
Hale of inventory part required at station 2: D

Neax assembly time: lO0

Any mre lines to create? (Y or N) No.
Maximumpart g at assembly line [default lOOh 2

Haxinu cart B at assembly line [default lOOh 2

Maximumpart B at nanufacturi_ cell [default lOOh 2
Naxinum cart B at manufacturing cell [default 100]: 2

)lean manufacturing Line: 10

Waneof inventory transfer: _I01

Mean inventory transfer time: 2
Nameof manufacturing cell: CBLLI

Num]_erof types of input items: 2
Nameof input item: k

Nameof input item: C

Waxlnum part D at aasembly line [default lOOh 2
Naxieum cart D at assembly line Idefault lOOh 2

Maximumpart D at nanufacLurinq cell [default lO01:2
Maximumcart D at nanufacturinq cell Idefault 1001:2

Weanmanufacturing time: 10

Nameof inventory transfer: _IGI

Nean inventorytransfertime: 2

Nameof manufacturinq cell: CELLI

Number of types of input items: 2
Nameof input itum: A

Nameof input itum: C

Naxtmumpart k capacity at assumbly line: [default 5000h lO0

Maximumpart C capacity at assembly line: Idefault 50001:]00

Figure5. Simulationassistantdisplay

ORIGINAl] PA_G]_ 18

OF POOR QUALI'I_

DistributionofstationI

I Exponential I

Normal

Inventory control of part B

Push

i I

Flgure 6, Various subwlndows
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ABSTRACT

The complexity of space systems and increased costs for construction and operation make it
necessary to both evaluate these systems in advance and to provide crew members with adequate
advisory facilities in flight to determine the impact of changes in operational parameters.
Currently, it is difficult to provide these facilities because of the need to weigh multiple objectives
against one another when making system operation decisions.

Simulation has long been recognized as a useful tool for studying the behavior of complex
systems which are conceptually difficult to understand and often mathematically intractable.
Unfortunately, there are problems which limit its utility. Factors which influence its use include:
the timeliness of results, cost, accuracy, lack of flexibility, and extensive programming
requirements. However, combining simulation methodologies with A.I. techniques yields a
practical approach to simulation known as knowledge-based simulation. The result is a tool
which not only aids in model development but makes specific recommendations based on

simulation analysis output.

This paper will describe an architecture for a knowledge-based simulator. The task of
scheduling represents an area in which such a tool might be applied. More specifically,
scheduling for crew and ground support activities for the shuttle and space station would benefit
from the application of knowledge-based simulation. The knowledge-based simulator would
allow the crew and support personnel to schedule and reschedule activities in a timely and
flexible manner to examine and test possible plans.

INTRODUCTION

"Simulation is the process of designing a model of a real system and conducting
experiments with this model for the purpose of either understanding the behavior of the system
or of evaluating various strategies (within the limits imposed by a criterion or set of criteria) for
the operation of the system" [6]. Systems which are characterized by complexity and task
criticality require an accurate model of the system and its operation to allow the exploration and
examination of system characteristics and to provide an opportunity for "fine-tuning" the
proposed event set prior to execution. In addition, there must be adequate interaction facilities
available during simulation execution to determine the impact of changes in important operational
parameters. This is especially important when many interacting objectives must be considered in
the decision-making process.

An approach to simulation is required that can accurately handle the complexity while
retaining flexibility and timeliness. Combining simulation methodologies with knowledge-based
techniques and object oriented approaches to modeling facilitates the automation of many of the
manual functions associated with simulation; particularly modeling and analysis of results. An
important attribute of this approach is the separation of data and procedures. Current simulation

* This work was supported by the McDonnell Douglas Independent Research and
Development program.
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languages embed data in procedures, thus limiting flexibility. The knowledge-based simulator is
accessible interactively to allow the user to dynamically explore possibilities. Simulation becomes
a more practical tool for "fine tuning" plans prior to implementation and performing "what if"
exploration.

CONVENTIONAL SIMULATION

Simulation, in general, allows observation of a system's behavior through the controlled
application of changes to a particular model. Simulators are tools that make it easier for humans
to solve problems by providing information which describes the performance of a system under
specific conditions. However, the results produced by current simulation techniques must be
analyzed by the user. In this sense, conventional simulation systems are essentially descriptive
rather than prescriptive tools that provide little insight or guidance to the inexperienced user.
Their use can lead to inaccurate system assessments since the evaluation of what occurs in the
simulation is the responsibility of the user.

The greatest advantage provided by simulation is that, by working with an idealized model
of a system, it is possible to perform evaluations that could not be performed on the real system.
Simulations are often used when an analytical solution either doesn't exist or is extremely
complex; experimenting with the real system is too expensive, too time-consuming, too
disruptive, or even destructive; or the actual system does not yet exist.

Current simulation techniques require the user to perform a manual set of steps. The user
defines the model using a simulation language such as SLAMII or GPSS. It is necessary to
verify the model prior to simulation. Analysis of the output is performed using operations
research techniques and user experience. The user must then formulate conclusions which are

justified by the analysis. The manual nature of these approaches results in a number of
disadvantages. Constructing the initial model is often costly in terms of both people and
computing requirements. Current techniques only address activities which have been explicitly
specified in a model which may or may not accurately represent the system. This results in a

serious lack of flexibility which is required for representing the dynamic systems. The accuracy
and timeliness of both the input and the output data are often questionable when dynamic systems
are modeled because of the time required for input and the difficulty in interpreting the output.

KNOWLEDGE-BASED SIMULATION

Knowledge-based techniques provide a basis for the development of a knowledge-based

simulation tool to aid decision making in complex systems which cannot be adequately modeled
or understood using mathematical techniques. Along with recommendations, knowledge-based
simulation is able to provide the rationale to support a proposed action. The fact that the model

knowledge, the operation logic, and the control components are separate provides modularity and
facilitates the modification or addition of facts and rules which control the system. The use of a

knowledge-based approach results in improved flexibility, improved user comprehension and
greater accuracy and reliability of recommendations. The knowledge-based simulator has the

ability to analyze developments over time, predict the future according to the assumptions implicit
in the simulation model, analyze the results according to the rules and facts contained in the
knowledge bases, and issue recommendations to the user.

Knowledge-based simulation applies the A.I. techniques of knowledge representation and
reasoning to automate and expand the conventional simulation approach. These techniques
expedite the development, verification, and modification of the simulation model by supporting
direct interaction between the user and the simulation model. In addition, they can be combined
with traditional operations research techniques to provide a facility which not only evaluates and
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explains simulation output but which allows the user to explore alternatives from any point in the
simulation. The knowledge-based approach to simulation uses an object-oriented representation
of relationships between entities. It provides a more flexible model which is more amenable to
change than are models programmed in more traditional simulation languages. [1,2,3,4,5]

ARCH_ECTURE

When defining an architecture for a knowledge-based simulator, a number of areas must be
addressed. These include the user interface, the model definition/editor, the simulation set-up,

the simulation, the simulation analysis, intelligent exploration, and the associated knowledge
bases. Figure 1 illustrates the basic components of a knowledge-based simulator.
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Figure 1. Architecture for a Knowledge-Based Simulator

User Interface

The User Interface is the user's link to the simulation environment. It must support the
model building process, the output process, and the simulation evaluation process. When
designing a user interface for any program, it is important to consider the user's background, the
circumstances in which the program will be used, what inputs are required, what can be
automated, what output information is important, and what form the information must take to be
most easily understood.

Knowledge-based simulation specifically requires that the user be able to enter a problem
description and goal statement as a set of constraints to the system. This input goes to the Model
Definition/Editor which synthesizes a model for the simulation. The user also enters Simulation
Parameters which include instructions for collecting simulation statistics.
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The User Interface must handle the conclusions drawn from simulation analysis and
produced by the Intelligent Exploration module. It must allow the user to query the Intelligent
Exploration module for an explanation of these Recommendations. These queries may request
that the simulation be modified and rerun starting at a specific point.

Model Definition/Editor

The model is synthesized from a combination of user input in the form of a Problem
Def'mition and Goal Definition. The Model Definition/Editor facilitates revisions to the model by
making it readily accessible to the user. It is also necessary for the model to be checked for
validity, consistency and completeness prior to simulation. The latter is a difficult problem!

The Model Knowledge Base contains operational data such as system states and state
transformation logic. This information specifies dynamic values, relationships among time
dependent variables whose values change as a result of system operation, and operation
procedures which move the system from state to state [1]. In addition, the Model Knowledge
Base might include skeleton entities which can be instantiated to specifically identify attributes
and behaviors which define the entity [3].

The model itself is composed of declarative objects and relations which match the user's

concept of model organization. The model contains rules and facts about the system on both a
global and local level. This knowledge defines system components, their attributes, and the
environment. The environment definition includes organizational goals, system entities, entity
relationships, and operational logic for dynamic interaction.

Simulation Set-up

The Simulation Set-up module takes the model and data collectors specified by the user and
produces a set of instructions for the simulator. The output of this module initiates the simulation
using the appropriate simulation parameters and instructions.

The setup and subsequent analysis access the Simulation Knowledge Base containing facts
and rules pertaining to the simulation. This knowledge base contains procedures for performing
the simulation and for evaluating results. A facility must be provided to allow the user to specify
an existing procedure or to define new procedures [3]. This knowledge base should be
extensible by the user.

Simulation

The simulation will initially be based on a discrete event approach. A clock will be
advanced to the current time as significant events occur. Significant events are defined by the
model. The simulation will be patterned after the object oriented techniques used in
knowledge-based tools such as Simkit from Intellicorp, Inc.

Simulation Analysis

The data resulting from the simulation is analyzed according to a user specified goal. The
user can indicate whether conventional operations research techniques or user defined methods
should be used. An approach to this analysis begins with the representation of each goal as a set
of constraints. Instruments for data collection provide input to the analysis. Following the
simulation, each constraint is evaluated using a constraint utility index which could be created at
the time the model is synthesized [3]. The effectiveness of a given event set can then be
determined by considering the relative importance of each constraint in terms of the event set
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being evaluated. The output of the analysis is sent to the Intelligent Exploration module for

presentation to the user in the form of Recommendations based on the evaluation results.

Intelligent Exploration

A knowledge-based simulator should provide the user with recommendations for further

improving simulation and analysis results. The user can then utilize this information to perform
further simulations in an exploration or optimization mode.

Graphic interaction allows the user to select objects and explicitly edit their attributes and
behaviors. The user should be able to query the states of visible objects, obtain graphical
representations of relations among objects, and use the display to explain the behavior of the
simulation wherever appropriate. This allows both intelligent explanation and intelligent

exploration. Exploration allows the user to selectively modify a simulation, examine options
from any point in the simulation, focus attention on selected aspects of the model, perform
sensitivity analysis, and ask how particular results might be achieved [5]. To this end, the
facility must be able to backtrack to a previous point in the simulation.

It is important that the user have confidence in the recommendations. Therefore, it must be
possible to request further explanation. In fact, the primary task of explanation is to convince the
user that a model is behaving reasonably and to show how the simulation arrived at a particular
result. This can be done graphically or by means of a query.

CONCLUSIONS

Knowledge-based simulation will provide a flexible, interactive environment for the
simulation of complex systems. The architecture described takes advantage of both conventional
simulation approaches and knowledge-based techniques to define a knowledge-based simulator.
This architecture can be extended to a variety of simulation applications.
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ABSTRACT

This effort has focused on using Artificial Intelligence (AI) programming environments and rapid prototyping to

aid in both space flight manned and unmanned payload simulation and training. Significant problems which have

been addressed by this work are (1) the large amount of development time required to design and implement just one

of these payload simulations and (2) the relative inflexibility of the resulting model to accept future modification. To

date, results of this effort have suggested that both rapid prototyping and AI programming environments can

significantly reduce development time and cost when applied to the domain of payload modeling for crew training

and, while the focus of this work has been modeling/simulation development for training, the techniques employed

are applicable to a variety of domains where models or simulations are required.

INTRODUCTION

This work was initiated as a response NASA Marshall Space Flight Center (MSFC) concerns regarding current

modeling techniques applied to model/simulation development for Spacelab payload crew training and operations.

Early discussions suggested that problems identified with current modeling processes would provide ideal test cases
for the application of advanced software development techniques, focusing on the use of AI programming

environments and rapid prototyping as capable of reducing the amount of time and cost required for model/simulation

development, resulting in software systems which are easier to modify and extend. To date, results have suggested

that rapid prototyping and AI programming environments show great potential to reduce development time and cost

when applied to the domain of payload modeling for crew training. In addition, movement toward a greater level of

system autonomy for both payload crew training and on-board payload operations will likely result in more efficient

and cost effective Space Station payload operations.

PROBLEM AND OBJECTIVES

The current function of the Payload Crew Training Complex (PCTC) is to provide an integrated simulation of

on-board Spacelab experiment operations for purposes of instruction in (l) procedures designed to bring the system to
an operational or shut-down state as well as monitor its health and status while running, and (2) predefined fault

handling command sequences. During an integrated simulation, the crew is required to respond to various scenarios

for each of the experiments included in a particular mission; scenarios may include normal as well as faulted

conditions. As the simulation proceeds, the simulation director, whose job it is to continually monitor the

simulation while running, may dynamically modify a limited number of experiment parameters. It is important to

realize that all crew procedures are rigidly defined and few, if any, deviations from those procedures are allowed.

When following the defined command sequence does not bring the system to a nominal configuration, the crew
requests assistance from ground support. Presently, there is little facility for allowing the crew to perform fault

detection/isolation activities or reconfigure the system in the case of an anomoly; all these functions are the

responsibility of the PI and other ground support personnel.

There are several problems with techniques traditionally used to develop models/simulations required for payload

crew training: first, the process of modeling payload experiments and simulating associated procedures is slow and

cumbersome. Second, due to several interacting factors, current models are extremely difficult to either modify or

extend, and third, several different (and often incompatible) computers may be used to develop simulation/training

models for different phases (e.g., design, flight operations), resulting in inconsistant software systems across the

development life-cycle. In summary, the current simulation/model development process is inflexible and resistant to

change. The notion of a simulation building/modeling environment which should be used across all life-cycle phases
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is appealing, and presents an opportunity for examining the effectiveness of alternative/advanced software

development techniques.

This effort examined the feasibility of applying rapid prototyping and AI programming environments to some of

the problems outlined above. Particularly, it was important to assess how effective, in terms of reducing both cost
and time incurred for model development, such techniques would be when used to model Spacelab payload

experiments.

The objective of this activity has been to develop and evaluate a software/hardware environment for rapidly

prototyping payload experiment simulations for training and operations. More specific technical objectives included

using rapid prototyping techniques and AI programming environments to (1) model three Spacelab experiments (Wide

Field Camera [WFC], Geophysical Fluid Flow Cell [GFFC] and Biorack) on the basis of documented experiment

simulation modeling requirements, (2) model the functionality of a Dedicated Experiment Processor (DEP - a
microprocessor provided by the experiment PI to increase the capability of the system), (3) simulate control/display

panels for the GFFC and Biorack experiments, (4) simulate current payload crew-machine interfaces (both display and

keyboard inpu0 for the WFC and Biorack experiments, (5) design and implement prototype interactive crew-machine

interfaces, (6) design and implement a prototype simulation director console for use in future payload simulation

design and autonomous payload crew training and (7) examine the potential for integrating advanced software/hardware

with existing PCTC software and hardware. It is important to understand that the techniques employed are applicable

to a variety of domains where models or simulations are required. The remainder of this paper describes in more

detail the approach taken and results obtained.

APPROACH

Hierarchical, object-oriented modeling/simulation is seen as an effective means of reducing inadequacies

associated with current simulation techniques. Relationships between and among dynamic system components are
often difficult to understand when traditional simulation methodology is used. Component behavior is difficult to

trace since code which directly impacts behavior is spread throughout the simulation model and is not necessarily

referenced to specific system components. For the same reasons, component interactions are even more difficult to

comprehend. Assumptions about system performance are not made explicit but are masked by low-level

mathematical/engineering information which can, again, be found throughout the model. In such cases,

modifications to the model are difficult to make and resulting interactions are often untraceable [1].

The approach we have taken to model/simulation building is hierarchical and top-down; modeling is viewed as

an iterative process in which the first model version represents a high level description of system functionality in
terms of qualitative relationships between and among system components. The idea here is that the system may be

abstractly described, and yet a 'working' model results. Indeed, general domain information related to the system

under consideration may be used to set the framework for dynamic system component interactions and may also make

reasoning about system performance more efficient (e.g., causal modeling, model-based reasoning). When tied to a

graphic representation of the system, the model, at any level, can be tested to examine the accuracy of current system
information. As knowledge about the system becomes more refined, the model can be easily modified or extended, at

the appropriate level, to incorporate the new information. The complex and frequently untraceable interactions which

often develop when modifications are made to traditionally developed models are minimized.

The combination of rapid prototyping and model hierarchies provides a more efficient process for model

development, particularly in relation to training simulations. The design and implementation of models/simulations

for training purposes need not, and indeed probably should not, be a separate activity from the design and
implementation of models/simulations for operations or verification and validation. The approach employed here for

model/simulation development uses rapid prototyping to facilitate both the requirements definition and

implementation phases of hardware/software development as well as speed the process of code generation.

Hierarchical model development results in using only those levels of model/simulation fidelity required by the
training process. Higher fidelity versions of models/simulations can then be used for verification and validation or

operations. In summary, only one software development effort occurs (two separate pieces of software are not

required) resulting in one, common piece software system with different levels of abstraction. Hardware

modifications which may impact simulations required for verification and validation or operations would only be
incorporated in the training software if those modifications would affect the training process.
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LISP AS A MODELING LANGUAGE - LISP appears to be an ideal choice for a rapid prototyping

programming language and was the language chosen for this work. LISP's primary advantage lies in its ability to

handle symbolic manipulation as well as numerical computation; an appropriate capability for the hierarchical

modeling/rapid prototyping approach outlined above. Abstract system component functional relationships can be

easily represented and the inherent flexibility of the language provides for rapid code extensions or modifications
when more detailed system information becomes available. Another basic feature of LISP which supports the

modeling approach we have taken is its ability to be run as either interpreted or compiled code. System

modifications are rapidly accomplished since only the modified piece of code need be reevaluated. In addition, this

facility allows for an incremental simulation capability in which simulations may be interrupted while running,

parameters or other features modified/examined and the simulation restarted from that point; such a capability is
highly useful both for system design as well as operations. Finally, in support of hybrid models, LISP allows

function calls which access other programming languages; readily available low-level FORTRAN component models

may be incorporated as part of the total system software.

pRODUCTION SYSTEMS AND MODELING - Production systems are useful for representing domain

knowledge which can be stated as condition-action pairs and have been traditionally employed to encode an expert's

knowledge about a particular domain for use in an expert system. However, their representation structure can also be

applied to any modeling application where logic tables are used as part of the modeling scheme. Note that for these

simulations, expert systems were not being created using production rules; the production system provided an

efficient bookeeping technique, allowing for ease in system modifiability; potentially dangerous system interactions

could be handled without great difficulty. Another benefit can be seen if one proposes the eventual incorporation of

an expert system for purposes of experiment fault detection/isolation or intelligent training. Much of the system

knowledge has already been encoded and extensions to the knowledge base are easily made.

Experiment modeling was completed using a three-level model hierarchy. Control passes from Level 1 (written

in LISP), which has responsibility for overall program flow, to Level 2, the experiment logic (written in the

production system language HAPS - Hierarchical Augmentable Production System) to Level 3, the math model

(written in LISP). If a rule fires which requires the calculation of a parameter, the appropriate equation is called and

the resulting value is passed to Level 1 or 2 depending upon the event. Modifications to the system can be made at

any level without adversely affecting any other. It should be clear that neither production rules (representing logic

tables) nor equations (representing low-level engineering information) were initially required to design and implement

an abstract, high-level model of the experiment. All that was needed to begin was a general narrative statement

outlining the overall system operational sequence; as necessary, logic tables and equations could be added later.

OBJECT-ORIENTED MODELING - The decision to use object-oriented programming as a primary technique

for experiment modeling was grounded in (I) the type of application and (2) that part of the approach which required

the design and implementation of dynamic, interactive graphics interfaces. Experiment system monitoring which
requires procedural input from the crew appears to be ideally suited to the message-passing capabilities which

object-oriented programming provides (flavors were used for this work). In general, the notion of representing a

dynamic system as a group of objects (components) and their associated behaviors is intuitive and provides a

structural framework from which inferences concerning system behavior can be made. Message-passing among

objects emulates potential system interactions since a single message can initiate any number of complex behaviors

or other messages. It is important to understand that objects need not be limited to hardware component

representation, but can be used to mirror other features of total simulation/model implementation such as process

control functions and their interactions. In addition, objects may be combined to form other objects, a facility which
is particularly useful when representing complex, dynamic systems [3].

The crew interface for experiment system monitoring was designed using the Phoenix Graphics Editor (also

flavors-based) which supports rapid prototyping of color, interactive graphics interfaces for a variety of applications.

Using Phoenix, objects can be graphically displayed and their behaviors either externally or internally defined.

Graphic objects can be made interactive so that the user can directly manipulate the color screen; when the user

interacts with an object on the screen, interactive behaviors associated with that object are triggered. Objects provide

a flexible and efficient means for prototyping user interfaces in dynamic systems. Interfaces for both the prototype

simulation director console and experiments were designed and implemented in significantly less time than it would
have taken without the benefit of object-oriented programming.
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One other significant benefit of object-oriented programming, crucial to the ease and rapidity with which

systems are developed and modified, needs to be mentioned: the notion of inheritance. Object hierarchies provide a

natural analogy to the modeling approach used for the present work. Higher-level objects correspond to higher-level

qualitative system information, whereas lower-level objects are more closely tied to lower-level quantitative

information. Object hierarchies can be defined Such that modifications made to behaviors or attributes of an object

will not affect any superordinate object. On the other hand, object modifications will be inherited by any subordinate
object (specific exceptions to this rule are possible). In addition, multiple inheritance (inherited information from

multiple objects) is useful when it is important to view an object from different perspectives [2].

INTELLIGENT MAN-MACHINE INTERFACES FOR TRAINING - Although not the primary focus of the

initial effort, part of the work accomplished to date has been the design and implementation of a prototype intelligent

simulation director console. As outlined above, the present situation in the PCTC requires that the simulation

director console be continually manned while a simulation is progressing. Such a mode of operation is becoming

prohibitively expensive. In addition, Space Station requirements that training software be transportable will compel

the development of software which is significantly more robust and capable of running more autonomously. The

prototype Space Station simulation director console was implemented to allow some idea of the potential intelligent

support might provide. The focus of the present prototype was in the area of simulation design, and rudimentary

interface functionality includes the capability to load various experiment software systems, choose simulation

scenarios based on the experiments loaded, change parameters for those experiments loaded, create experiment

timelines for the simulation and dynamically add events to appropriate timelines by directly interacting with the
screen.

The Phoenix Graphics Editor (developed by MMAG) was used to prototype initial versions of advanced crew

interfaces for purposes of training and operations. Initial interface designs may be rapidly implemented (1-2 days) and
are easily associated with an underlying system or procedural model. System operations or perturbations are reflected

by visual changes in graphic component representations. The Phoenix system allows windows created using the

editor to be combined with any kind of window available on the Symbolics machine, providing flexibility in overall

interface design and functionality.

It would appear that the potential for applying intelligent crew interface support features is significant. In an

operational state advice concerning procedures to be taken in a given system state might be made available to the

crew. In a training scenario, advice would be more tutorial in nature. Other intelligent support features (e.g.,
automated procedural sequences, automatic report generation) could also be added. Future work will examine these

important issues.

RESULTS AND CONCLUSIONS

The two major problems, the large amount of time required for model development and the resistance of finished

models to modification, have both been successfully addressed. To date, comparisons of advanced and traditional

modeling approaches suggest software development time and resulting cost are significantly less when the advanced

approach is used. The WFC experiment model/simulation was completed in 3.0 man-months (NASA's estimate was

28.0 man-months), while undergoing several major modifications. Modeling the GFFC experiment, including the

DEP and simulating the control/display panel, was completed in 1.5 man-months; it is estimated that the GFFC

experiment represented a more difficult case than the WFC due to the inclusion of the DEP and the control/display

panel. DEP modeling was not a significant issue since it could be subsumed in the overall control structure. Indeed,

GFFC DEP functionality was limited by NASA to handling inputs from the control/display panel and processing a

master fault condition. Modeling the Biorack experiment, including the simulation of all current DDUs (Data

Display Unit) and control/display panels, Was accomplished in 2.0 man-months. In terms of overall system

functionality, models developed using the advanced approach have been externally validated and appear to evidence the
fidelity expected from experiment models developed using present techniques.

Using Phoenix as a rapid prototyping tool for the design and implementation of interactive crew interfaces

proved to be extremely beneficial. Current payload crew interfaces for the WFC and Biorack experiments, as well as

a prototype interactive interface for the WFC experiment, were rapidly implemented (2 man-weeks). In addition,

control/display panels for the GFFC and Biorack experiments were easily simulated (3 man-days). It is important to

realize that rapid implementation of interfaces facilitates immediate testing of the experiment model under
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development. Additions/modifications to the WFC, GFFC and Biorack models could be dynamically tested and

feedback provided concerning model accuracy by visually inspecting system performance. The usefulness of Phoenix

for person-machine interface design is apparent since modifications to any interface were easily made and their impact

immediately assessed. Using HAPS to represent experiment logic tables provided an analogous rapid prototyping
environment for the implementation and modification of certain model information. Also, the data represented by

HAPS rules are the beginning of a knowledge base which most certainly would be required in the event an expert

system for experiment fault detection/isolation and system reconfiguration or intelligent training was needed. As
indicated above, using HAPS allows for rapid future model/system modification and enhancement.

Future work will focus on two major areas: (1) continued development of the simulation director console which

will automate a majority of tasks manually performed by the current simulation director, and (2) integration of

advanced software/hardware with the system configuration already in place at the MSFC PCTC. Both of the these

areas are considered crucial to future Spacelab and Space Station payload crew training. For Spacelab, work has

already begun which examines the feasibility of integrating advanced software/hardware with existing PCTC

software/hardware. What is proposed is control, through our software/hardware, the training simulation in the PCTC

while at the same time continuing to use present displays and hardware for purposes of crew training continuity. For

Space Station, the development of autonomous training simulation control, the capability for intelligent support in

simulation design and the design of more effective crew interfaces are all areas which need to be examined.

The work described in this paper suggests several conclusions: first, the use of rapid prototyping and AI

programming environments is an efficient and cost effective means of accomplishing payload modeling for purposes
of crew training. Hierarchical, top-down modeling in combination with object-oriented programming appears to

provide a flexible structure for rapid model design, implementation, modification and enhancement. Using this

approach implies that (1) high-level, abstract models could be used for training prior to the availability of

higher-fidelity models, (2) lower-fidelity models may be all that are required for some training applications and (3) if
needed, low-level engineering math models may be added later; additions which could provide in-flight operational

software. Second, better crew interfaces would reduce crew training time by easing memory load and providing more

efficient system monitoring capabilities. Intelligent crew interface support could provide needed advice in the event
of an anomolous condition, in either training or operational settings, and could carry out more routine procedural

sequences now manually accomplished. Third, there appears to be significant potential for intelligent support in

training simulation design and operation, for both Spacelab and Space Station.
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ABSTRACT

Range imagery from a laser scanner developed at

ERIM can be used to provide sufficient information

for docking and obstacle avoidance procedures to be

performed automatically. Three dimensional model-

based computer vision algorithms in development at

ERIM can perform these tasks even with targets which

may not be cooperative (that is, objects without

special targets or markers to provide unambiguous

location points). Roll, Pitch, and Yaw of vehicle can

be taken into account as image scanning takes place,

so that these can be corrected when the image is

converted from egocentric to world coordinates. Other

attributes of the sensor, such as the registered

reflectence and texture channels, provide additional

data sources for algorithm robustness. Temporal

fusion of sensor images can take place in the work

coordinate domain, allowing for the building of

complex maps in 3-space.
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USING

ABSTRACT : This paper presents our work performed as a step toward an intellegent
automatic machine vision system for 3-D imaging. The problem considered here is the

quantitative 3-D reconstruction of rigid objects. Motion and stereo are the two cues to be
utilized in our system.

The system basically consists of 3 processes: (i) the Iow-level process to extract image

features, namely the corner points, (ii) the middle-level process to establish the correspon-
dence in two modalities: stereo (spatial) and motion (temporal) and (iii) the high-levei
process to compute the 3-D coordinates of the comer points by integrating the spatial and
temporal correspondences.Once the final correspondence is obtained, the comer points in
the 3-D space can be determined easily as the intersection of two lines connecting the light
sources to the corresponding points in the left and right views.

I. INTRODUCTION

Our problem is stated as follows:

Given 2-D images from a frame sequence of a moving rigid object taken by stereo
cameras, perform a quantitative 3-D reconstruction on the object, i.e. determine the 3-

D coordinates of the object control points.

The main goal of our research is to develop a strategy to combine information ex-
tracted from two independent sources: stereo and motion. Each source carries different
cue on the object 3-D structure. Our work exploits the complementary nature of these
two sources to reconstruct the object.

II. OUR APPROACH

Our approach is a hierarchical one. We break the solution into three distinct
processes: low-level process, middle-level process and high-level process.

1) Low level process: Feature extraction

The low-level process segments the images into relevant features. These features
will be used as the tmage descriptors for subsequent processing.

In the problem we are considering, there are images of rigid objects with regular
geometrical shapes, i.e. shapes with well defined lines, curves and comers. The features
to be extracted, therefore, should be related to these characteristics. One type of fea-

ture that is particularly useful for the processing of rigid objects is the comer point.

A comer point in an image is defined as a point which is an edge point and has
significant change in the edge direction. Several researchers have proposed many
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comer detector algorithms. After several experiments, we found that the Zuniga-
Haralick [3] comer detector performed reasonably well for a variety of scenes.

2) Middle level process: Correspondence

The input to our correspondence process is the list of comer points detected in
the segmentation (feature extraction) process. The spatial correspondence due to
stereo will be carried out for two views (left and right) at each frame instant. The tem-

poral correspondence due to motion will be carried out for two consecutive flames of
the same ,clew. Therefore, each correspondence process will involve four images
grouped in four pairs. We solve the spatial correspondence by the epipolar line tech-
nique and the temporal correspondence by the relaxation matching m&hod.

The epipolar line technique requires that the geometry of the two stereo cameras
is known. For each point in the right image (the use of the right image is purely ar-

bitrap/), the equation of the epipolar line (in the left image) is computed. All points
that lie in the neighborhood of this line are obtained as the spatially corresponding
points.

The temporal correspondence is determined by a cooperative relaxation match-
ing algorithm similar to the matching technique by Barnard and Thompson [1]. Our
matching algorithm differs than that of Barnard and Thompson in two aspects: (i) the
initial similarity measure is based on neighborhood interdistances and (ii) the match-
ing is carried out in two directions (forward and reverse), only those points that are
matched consistently in both directions are kept. This method eliminates the need of
selecting proper probability threshold and also reduces false matches.

The details of these algorithms are described in [2].

3) High level process: Integration

The main task in the high level process is the resolution step• The resolution step
uses the consistency principle. Correspondence must be consistent for both stereo and
motion. In other words, if two points PL and PR of the left and righ image at frame i

are two spatially corresponding points, then at frame j, QL and QR must also be spa-
tially corresponding where QL and QR are the two temporally corresponding points
of PL and PR respectively.

The spatial and temporal matchings will form loops. A loop is a closed matching

sequence. Each loop will essentially pass through four points in the four images as il-
lustrated in Figure 1. There are two kinds of loops:

• Shared loops: Loops which share same point(s).

• Single loops: Loops which do not share any points with any other loops

Conceptually, single loops are usually stable loops which represent correct match-
ing sequences of all the four points in four images. There are cases, however, that single
loops pass through incorrect corresponding points due to error in temporal correspon-
dence or noisy conditions. We, therefore, propose the use of single loops only as a guide
to search for correct loops, single or shared.
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single loop_

leftl
left2

rightl
right2

Figure 1 • Example to show some loops

Let" rightl,leftl denote the two stereo views of the first frame.
right2,1eft2 denote the two stereo views of the second frame.
N denote the total number of points in the rightl view.

Our resolution algorithm then consists of the following steps •

Step 1: Determine single loops - For each point in the right1 image, find all closed
loops going in the clockwise direction (the selection of clockwise direction is arbitrary).
Select only single loops from these closed loops. Repeat for all N points in the right1
image. Let K denote the number of single loops.

Step 2: Determine initial object points - For each stereo pair in each single loop,

compute the 3-D coordinates of the points in space. The result of this step is a set of 3-
D coordinates of K points in frames 1 and 2. These K points will serve as a basis for
further refinement.

Step 3: Find all possible matches - For each point in the right1 image, find all the
possible matches in other images.

Step 4: Sort out potential candidates - From all possible loops for each point in

the rightl image, select the best L loops ( L is a small number relative to N). The
critenon for determining 'best" loop is the deviation from rigidity. This deviation from
rigidity is determined by computing the difference of the sums of distance errors from
the two 3-D points in two consecutive frames. The distance is from the point to the K
points found in step 2.

Step 5: Applying rules to select the best pairs - From the L best candidate pair
found in step 4, we then apply the following heuristic rules to select our final best pairs
because the smallest deviation of rigidity does not necessarily lead to correct loop due
to potential errors and mismatches.

• Rule 1: If the smallest error is three times smaller than the second smallest error

then the pair having the smallest error is the final best pair.
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• Rule 2: If any single loop in step 2 is one of the candidate pairs, and if the rela-
tive difference between the corresponding error and the smallest error is less than 0.2,
and if this corresponding error is less than a threshold then the single loop in question
is the final best loop.

Step 3, 4 and 5 are repeated for all points in the rightl image. From these loops,
we then remove redundant loops because some of these loops may be the same loop
by keeping only the loops which have the first point in the rightl image the same as the
corresponding starting point of that loop.

From the final best loops, the 3-D coordinates of the object point can be deter-

mined easily as the intersection of the two lines connecting the two focus points of
cameras and the two stereo points on the image planes. Let (x,y,z) and (x ,y',z ) denote
the coordinates of two temporally corresponding points, the object mouon can then

be modeled as an affine transform. The affine transformation is a mapping to trans-
form the three coordinates (x,y,z) to a new set of coordinates (x',y',z). The overall ef-
fect of rotations and translations results in the following equations :

x' = a0x + aly + a2z + a3

y' = box + bty + b2z + b3 (1)

z' = c0x + cly + c2z + c3

When the number of object control points is sufficiently large ( greater than 5 for
example ), we can use the computed coordinates to estimate the ai, bi parameters
(i = 0,1,2,3) in the equations (1) using the least squares method. These parameters can
then be used to predict object coordinates so that other tasks (e.g. tracking) can be per-
formed.

IIl. RESULTS

We used simulated images to test our techniquel The simulated images were ran-
dom dots in space. We arbitrarily placed these dots on the surface of an ellipsoid. For
the results reported here the lengths of the ellipsoidal axes are 500 mm, 400 mm and
500 mm in the x,y, and z directions respectively.

The computed 3-D coordinates are then compared to the true 3-D coordinates.
The error is computed as the distance between the computed point and the true point.
We counted the number of points that have errors in 3 groups. Group 1 consists of
points that have small error (from 0 to 30 mm). Group 2 consists of points that have
medium error ( from 30 mm to 75 mm ). Group 3 consists of points that have large error
( greater than 75 mm ). The number of generated points is 10. Uniform random noises
are added to displace these points. These points are also randomly deleted in both
image planes• For 10 runs, the total number of points in both frames is 200.

The camera focus length is 16 ram. The two cameras are displaced by 500 wan, 0°
mm and 50 mm in the x,y and z directions respectively. The right camera is rotated 10
in the y direction. The object is placed at a distance of 2800 mm in the z direction. Mo-
tion parameters of the object are : translation (-50 ram, 0 mm, 50 ram), rotation (5 °,5 °
,5 °) in the x,y and z directions respectively.

The result of one typical simulation is shown in Table 1.
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No. of deletions Noise strength (pixels) Group1 Group 2 Group 3

/i'°o:oo
:o

0 131 0 1
1 131 0 1
2 103 26 3
3 71 36 16
4 52 38 26
5 37 53 32

0 118 0 1
1 118 0 1
2 95 18 2
3 64 31 13
4 45 35 12
5 38 41 20

it 0 103 1 2

1 103 1 22 82 16 4
3 60 35 10
4 34 43 17
5 29 36 22

Table 1: Number of computed points in 3 groups.

IV. CONCLUSION

This paper describes our work in determining the 3-D structure of rigid objects
using stereo and motion. The image features are the comer points. Correspondences
of image features are carded out for stereo (spatial correspondence) and motion (tem-
poral correspondence) using two independent methods. The two tTpes of correspon-
dence are then integrated to produce the final correspondence which provides the 3-
D coordinates of the image features. Our integration technique exploits the rigidity
constraint and heuristic rules. Results obtained by simulation show that our technique
works reasonably well even under several noise sources.

ACKNOWLEDGEMENTS

The work described in this paper is supported by NASA Marshall Space Flight
Center under Contract No. NAS8-37308. The guidance and support of NASA person-
nel, in particular, Mr. Glenn Craig, are sincerely acknowledged.

REFERENCES

[1] Bamard, S.T. and Thompson, W.B., "Disparity Analysis of Images," IEEE
Trans. on Patt. Anal. and Mach. lntell., Vol. PAMI-2, No. 4, July 1980, pp. 333-340.

[2] Nguyen, T.V., "Computing Range and 3-D Structure of Rigid Objects using
Stereo and Motion," MULTISIGNALTECHNOLOGY CORPORATION, Technical
Report TR-8ZO01, July 1987.

[3] Zuniga, O.A. and Haralick, R.M., "Comer Detection Using the Facet Model,
Proc. IEEE Computer Society - Computer Vision and lmage Processing, 1983, pp. 30-37.

267



N88-16408
REAL TIME AI EXPERT SYSTEM FOR ROBOTIC APPLICATIONS

John F. Follin

ABSTRACT

GA Technologies has developed and constructed a

computer controlled multi-robot process cell to

demonstrate advanced technologies for the
demilitarization of obsolete chemical munitions. This

cell contains two robots, an advanced machine vision

system, and a variety of sensors (force, range

finding, and tactile). Autonomous operation of the

cell under computer control has been previously

demonstrated and reported.

Although expert systems are not new to the

artificial intelligence world, systems that are easy

to use (programmers and operators), work within a

process control system, control multi-robots and

vision systems in real time, and are very flexible and

hard to come by. Here at GA we have developed an

expert system based in Data General's Common Lisp.

The purpose of this system is to demonstrate that once

the expert system is operating with rules the system

can carry out operations that have not been

preprogrammed. These operations, or goals, can be

introduced into the system and the artificial

intelligence software will solve the goals and

generate a solution or solutions. The system will

execute these solutions using a variety of hardware

equipment. The presentation will discuss the

development and operation of our expert system.

GA has, using internal funding, incorporated an

Artificial Intelligence processor to direct the

control of the process cell. The system uses an

Expert System that was developed in a Common Lisp

environment which can solve a variety of problems

using a rule based system. Rules and goals for

various processes to be demonstrated were input to the

system and control of the robotics cell through

Artificial Intelligence was achieved. Any rules that
were

goal

syst
inte

and

interfacing. A special feature of interest is

of sophisticated computer graphics for LISP

development, testing and execution monitoring.

modified or created during the solving of system

s were stored for later recall; in efect, the

em can learn new rules. The expert system is

rfaced through touch screens, voice recognition,

voice synthesizers for easier man-machine

the use

system

This presentation describes the methods through

which the vision system and other sensory inputs were

used by the AI processing system to provide the
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information required to direct the robots to complete

the desired task. The presentation discusses the

mechanisms that the expert system uses to solve

problems (goals), the different rule data base, and

the methods for adapting this control system to any

device which can be controlled or programmed through a

high level computer interface.

Various applications and system demonstrations

(some pertaining to space) have been performed using

the above equipment and will be discussed.
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SOLID MODELLING FOR THE MANIPULATIVE ROBOT ARM (POWER)

AND ADAPTIVE VISION CONTROL FOR SPACE STATION MISSIONS*

V. Harrand

A. Choudry

Center for Applied Optics

University of Alabama in Huntsville

Huntsville, AL 35899

ABSTRACT

We have studied the structure of a flexible arm

derived from concatenation of the Stewart-Table-based

links. Solid modelling provides not only a realistic

simulation but is also essential for studying vision

algorithms. These algorithms could be used for the

adaptive control of the Arm, using the well known

algorithms such as shape from shading, edge detection,

orientation, etc. Details of solid modelling and its

relation to vision based adaptive control will be
discussed.

*Work supported in part by NASA Grant #NAGW-847 and
State of Alabama Research Council.
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FOR OPTIMAL AND SEMI-OPTIMAL RESOURCE ALLOCATION

Susan M. Bridges
James D. Johannnes

Computer Science Department
The University of Alabama in Huntsville

Huntsville, Alabama 35899

ABSTRACT

This paper examines the use of iterative-deepening A* (IDA*) in solving a certain
class of resource allocation problems. IDA* stores a number of nodes proportional to the
depth of the solution in the search tree rather than the number of nodes generated as in
A*. A* and IDA* solutions to the resource allocation problem were implemented with
empirical results showing that the low effective branching factor associated with
real-valued cost estimates causes an unacceptably large number of nodes to be
generated by IDA*. A modification of IDA* that can be used for semi-optimization, called

IDA*_, was developed and is shown to be an C-admissible tree search algorithm. A

comparison of the performance of A*, IDA*, and IDA*_ for resource allocation

demonstrates the effectiveness of IDA* _ in reducing the computational requirements of

the problem.

1. INTRODUCTION

Mission planning for space applications must address many resource allocation
problems of various types. This paper will examine a class of resource allocation
problems in which resources have a given effectiveness in reducing the value of tasks
and more than one resource may be used for a particular task. The problem is to find
an optimal allocation of resources to tasks that maximizes gain, i.e. the total reduction in
task value minus the cost of the resources allocated.

Slagle and Hamburger [6] report the use of the A* heuristic search algorithm in
solving this resource allocation problem. In recent work by Korf [1,2], a variation on A*,
called iterative-deepening A* (abbreviated IDA*) has been shown to be optimal in terms
of space and time requirements among heuristic best-first tree searches. This paper
reports the investigation of IDA* for solving this type of problem. Difficulties that arise
when the cost function used with IDA* is real-valued rather than integer are discussed,
and the development of modifications of IDA* that can be used for semi-optimization is
reported.

2. BACKGROUND

The following description of this type of non-linear resource allocation problem is
modeled after that of Slagle and Hamburger [6]. The problem is to assign a set of
resources to a set of tasks where each resouce has a given cost and each task a given
value. Additionally, for each resource-task pair, an effectiveness value in the range 0.0

PRECEDING PAGE BLANK NOT FILI_"D
273



to 1.0 is given that represents the expected portion by which the task value will be
reduced if the resource is assigned to the task. For each resource, there are n + 1
choices for assignment where n is the number of tasks, i.e. the resource may be
assigned to any of the n tasks or not used at all. The choice of not using a resource is
assumed to have a gain of 0 and so would be chosen over assignments resulting in a
negative gain. Given a choice between not using a particular resource or using a
resource-task assignment with a gain of 0, the choice of not using the resource will be

chosen. Several resources can be assigned to the same task with the assumption that
they do not interact.

3. A* VERSUS IDA*

Slagle and Hamburger [6] describe the use of the A* algorithm to find an optimal
plan for assignment of resources to tasks. A* has been shown to always yield an

optimal solution when the heuristic cost function used is consistently "optimistic" [3], i.e.
for minimization problems it always underestimates the cost of the solution and for

maximization problems it always overestimates the value of the solution. Heuristics with
this property are called "admissible" . In general, the A* algorithm has storage
requirements proportional to the number of nodes that will be expanded. Korf [1,2] has

shown that a modification of A*, depth-first iterative-deepening A* (IDA*), has space
requirements proportional to the depth of the solution node in the search tree. In
addition, IDA* always finds an optimal solution in a manner similar to A* and
asymtotically expands the same number of nodes as A*. In the section below, we
describe the implementations and results of experiments comparing the efficiency of the
A* and IDA* algorithms for resource allocation.

For both algorithms, the search tree is organized such that each level in the tree
represents the allocation of a particular resource. Thus, the depth of the tree, d, is equal
to the number of resources, and the branching factor of the tree is (n + 1) giving a total
of (n + 1)d nodes in the complete search tree. Each node in the tree represents a partial

plan for allocation of resources with the root node representing the plan of not using any
of the resources. The evaluation function for each node is the sum of the gain (g)
achieved by the partial plan, and an estimate of the gain achievable by allocation of the
remaining resouces (h). The heuristic used for the calculation of h in this implementation
is similar to one of the heuristics described by Slagle and Hamburger [6]. For each
resource remaining to be allocated, the maximum gain achievable by that resource with
the task values of the current node is calculated. Interaction among resources is
ignored. The value of h is the sum of these maximum gains or the sum of the current task
values, whichever is lower. Clearly, the cost function is both monotone and admissible
since the gain calculated is always optimistic and becomes more accurate (lower) as
more resources are added to the partial plan.

In the A* solution to this problem, a priority queue (OPEN list) is maintained that

contains all nodes that have been generated but not expanded. These nodes are
ordered in descending order by estimated gain. Nodes are successively removed from
the queue and expanded until a solution node is found (a node where the actual gain is
equal to the estimated gain). This problem is unusual in that every node in the search
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tree represents a solution (an allocation of resources to tasks), so any child node that

has an estimated gain less than an actual gain already found can be pruned and never
reconsidered.

The IDA* algorithm does not use an OPEN list. Instead, a threshhold value is

maintained for each iteration and any node that has an estimated gain less than the
threshhold value is not generated on that iteration. The initial value for the threshhold is

the gain estimate for the root node. A simple recursive depth-first search is done of all

nodes with gain estimates greater than or equal to the cutoff. In addition, the value of the
highest rejected node is recorded. The search terminates when a node is found with an

actual gain equal to its estimated gain. If a solution has not been found at the conclusion

of the depth-first search with a given cutoff, the value of the threshhold is changed to the

highest rejected value and the search is done again. The iteration process is repeated
until a solution is found and the solution found is guaranteed to be optimal since all

nodes with higher possible gains will have been examined on previous iterations.
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Figure 1. Performance comparison of A*, IDA*, and IDA*¢ on the same data sets. In this experiment, the

number of resources was equal to the number of tasks. Task values, resource costs, and effectiveness
values were randomly chosen from uniform distributions. The solid line represents the mean ratio of the
number of nodes expanded using IDA* compared to A*. The dotted line represents the mean ratio of the

number of nodes expanded using IDA*¢ compared to A*.

The solid curve in Figure 1 shows the results of an experiment comparing the use of A*

and IDA* on the same randomly generated data sets. The curve represents the mean

ratio of the number of nodes expanded using IDA* to that expanded using A*. Although

IDA* always stores far fewer nodes than A*, the number of nodes generated by IDA*

grows at a much faster rate than for A*. Both algorithms quickly overwhelm
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computational resources with A* consuming all available'space and IDA* requiring an

unreasonable amount of time for relatively small size problems. Other experiments have
shown that some improvement in performance is achieved by considering the resources

in order of maximum possible gain, but the improvement is not sufficient to avoid the
computational limits encountered.

Korf [2] has shown that for tree search problems with a branching factor, b, of
magnitude greater than 1, IDA* opens asymtotically the same number of nodes as A*.
The order of the algorithm is b d, where d is the number of iterations and b is the ratio of

the number of nodes opened during the current iteration to the the number of nodes
opened on the previous iteration. The constant coeffficient is (1 - l/b) -2 as the search

depth goes to infinity. Korf [1] pointed out that for branching factors close to 1, the
constant coefficient approaches infinity as the search depth goes to infinity.
Unfortunately, in our problem and, in fact, in many domains with real-valued evaluation
functions, the branching factor is often close to 1 with the algorithm opening only one
additional node on each iteration. The semi-optimization algorithm described in the
next section was developed in an attempt to find a modification of IDA* that has better
performance characteristics for problems with real-valued cost functions.

4. SEMI-OPTIMIZATION WITH IDA*

Pearl [4] describes several speedup versions of A* (called A* E ) that can be used

for semi-optimization. Algorithms that guarantee that the cost of the solution (for
minimization problems) will not exceed the cost of an optimal solution by a factor of more

than 1+ E are called k-admissible. We describe an k-admissible modification of IDA*

(IDA* E ) which exhibits the same characteristics of increased performance as

E-admissible versions of A* but with much reduced storage requirements. For purposes
of this discussion, we will describe the algorithm as used for minimization of cost
problems as is traditional for A*.

IDA* E works much like IDA* except that the threshhold for the initial iteration is set

to 1+ E times the cost of the root node and on successive iterations it is set to 1+ E times

the cost of the lowest rejected node from the previous iteration. As with IDA*, on each
iteration a simple recursive depth-first search is done of all nodes with cost estimates

less than or equal to the threshhold. Note that the storage requirements for IDA* E are

proportional to the depth of the solution in the search tree and are handled automatically

via the runtime stack. The search terminates when a goal node is chosen for expansion.

A relatively straight-forward modification of Pearl's proof for the k-admissibility of A* can

be used to prove the k-admissibility of IDA* E .

The only modification necessary to convert the IDA* resource allocation program to
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IDA*¢ was to change the calculation of the threshhold. As guaranteed by the algorithm,

the IDA* E program found allocation plans with gains within 10%(c) of the optimal gains

for plans found by A* and IDA*. Since the number of iterations of IDA*¢ can never

exceed 1/_, this algorithm avoids the explosive growth in the number of nodes generated

that occurs with IDA*. Figure 1 shows a comparison of the mean number of nodes

generated by IDA* and IDA*_ with both normalized to A*. IDA*¢ also opens significantly

fewer nodes than A*. This indicates that A* and IDA* spend a great deal of time
discriminating among solutions of approximately the same value. Whereas A* has

storage requirements proportional to the number of nodes generated, IDA* and IDA* E

both have storage requirements proportional to the depth of the search tree (the number

of resources in this case). Thus, IDA*¢ uses far less time than IDA* and far less space

than A* while guaranteeing a solution with a cost within a factor of 1 + ¢ of the optimal

solutions found by these two algorithms. This reduction in time and space complexity

allowed the IDA*_ program to find semi-optimal solutions to problems that could not be

solved using A* or IDA* within the time and space limits imposed.

5. CONCLUSIONS

Resource allocation problems of many types will continue to be of vital importance
in mission planning. We have demonstrated that when IDA* is applied to one type of
resource allocation problem, it uses far less storage than A* but opens far more nodes
and thus has an unacceptable time complexity. This is shown to be due, at least in part,
to the low-valued effective branching factor that is a characteristic of problems with

real-valued cost functions. The semi-optimal, k-admissible IDA* E search algorithm that

we described was shown to open fewer nodes than both A* and IDA* with storage
complexity proportional to the depth of the search tree.
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ABSTRACT: Similarity networks are a powerful form of knowledge

representation that are useful for many artificial intelligence

applications. Similarity networks are used in applications ranging from

information analysis and case-based reasoning to machine-learning and

linking symbolic to neural processing. Strengths of similarity networks

include simple construction, intuitive object storage, and flexible

retrieval techniques that facilitate inferencing; therefore similarity

networks provide great potential for space applications.

INTRODUCTION

Space exploration depends upon computers to aid in such tasks as

navigational control, mechanical and electrical systems monitoring, and

flight tracking. As equipment used in space becomes more complex, the

role of computers becomes vital in the areas of design, monitoring,

control, and maintenance. To keep the pace with this complexity, computer

hardware has developed faster processers using RISC architectures and

parallel processing. Computer software must now become more intelligent

as well as more abundant. Intelligent software is needed to enhance the

capabilities of limited personnel, whether they be crew members or design

teams. Potential areas for increased use of intelligent software include

system design, decision support, simulation, and information retrieval.

The intelligent software necessary to facilitate the various tasks

mentioned above utilizes artificial intelligence (AI) techniques.

Artificial intelligence applications are based upon some type of mapping

between concepts in the physical world and abstract software datatypes.

This mapping is known as knowledge representation. Choosing the proper

knowledge representation is vital to the success of an artificial

intelligence application. A good knowledge representation has the

following properties:

o Makes important things explicit,

o Exposes constraints,

o Is complete and concise, and

o Is easy to use.

Similarity networks are a powerful form of knowledge representation

that are well-suited to many artificial intelligence applications. This

is especially true in space applications due to the ill-defined nature of

search spaces and formerly intractable problems facing aerospace and

astronautics engineers. Created to assist machine learning programs,

similarity networks may also be used to analyze information, reason from

experience, and support various other AI techniques.

_RECEDING PAGE BLANK NOT FILIV,F..D
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SIMILARITY NETWORKS DEFINED

Similarity networks are a knowledge representation technique that

stores and links objects based upon their similarity to each other.

Similarity networks are composed of clusters of objects that are connected

via weighted links. As the networks become more complex, hierarchies of

clusters and networks are formed. The objects represent the physical or

abstract concepts that are being stored in the network. An object may be

as simple as a letter of the alphabet or as complex as an electrical

circuit design. The weighted links connect any two objects and designate

the degree of similarity between the objects.

SV = Saturn V Rocket

SH = Space Shuttle

SL = Space Lab
LE = LEM

SS = Space Station

TR = Triton

WS = Weather Satellite

PP = Planetary Probe
CS = Comm. Satellite
TV = Terrain Vehicle

Figure i.

An example of a similarity network, shown in Figure i, describes the

relationships between and among various classes of space vehicles. Notice

that functionality characteristics such as propulsion and data gathering

as well as physical attributes such as dimensions and mass help to form

the clusters within this network. For example, a planetary probe is

linked to a weather satellite in part because they form similar

exploratory tasks.

Similarity networks were first described in Patrick Winston's thesis

"Learning Structural Descriptions from Examples" [Winston75]. They are

later mentioned in Minsky's paper "A Framework for Representing Knowledge"

[Winston 75]. The first implementation of a similarity network was the

result of thesis work done by David Bailey [Bailey 86]. Mr. Bailey

experimented in methods of constructing, searching, representing, and

evaluating similarity networks. Using this experience, ICF/Phase Linear

Systems has been researching the use of similarity networks in artificial

intelligence for a broad range of applications in industry, government,

the military, and in space.

CONSTRUCTING A SIMILARITY NETWORK

The first step in constructing a similarity network is choosing and

describing the objects to be stored. Objects are chosen based upon the

type of application to be built. For example, to build software that

reasons from experience, descriptions of situations and outcomes are used

to build the network. As a second example, if a tool identification
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program is desired, descriptions of various types of tools and their

purposes need to be stored.

The physical, conceptual, or abstract objects to be stored in the

network must then be described. This may be accomplished with object-

attribute-value triplets, property lists, natural language texts, or other

knowledge representations depending upon the type of marcher used to

compare the objects.

The matcher compares each object to all of the others and returns

the number of features in common and the number of features unique to each

object. These numbers are then put into an equation that determines the

similarity score for the objects. If the score exceeds the minimum

threshold established by the system designer, the objects are linked in

the resulting similarity network.

Several choices are made in constructing a similarity network,

including the proper similarity equation to use, the weights to use within

the equation, the description of the objects, and the threshold at which

links are to be formed. The quality of the network can be determined

using heuristics that examine the clusters within a network, as well as

the intuition of the network developer. An advantage of the similarity

network approach is that it has a built-in form of sensitivity analysis

for a final evaluation of the network.

An iterative construction process produces many views of the network.

This ensures that specific knowledge representation requirements and

objectives are met. In addition, new relationships between the objects

that were previously undiscovered now emerge as the network construction

parameters are varied. By creating an awareness of new relationships,

similarity networks provide invaluable assistance in exploring complex,

qualitative, and ill-defined problem spaces.

SIMILARITY NETWORKS IN AI APPLICATIONS

Similarity networks are an effective knowledge representation for

many AI applications. Two types of applications particularly well suited

to similarity networks are information analysis and case-based reasoning.

Information Analysis

Information analysis applications process new data or take a fresh

look at existing data. Similarity networks facilitate several information

analysis applications including:

o Object identification

o Resource substitution

o Perspective changing

o Knowledge acquisition.

Each of these applications is described in more detail in the paragraphs

below. To illustrate some practical uses of these applications, an

example from a spacecraft electrical systems design scenario will

accompany each description.
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An object identification application takes as input the description

of an object and produces as output the name or category of that object.

Identification applications search the similarity network for an object

that matches the input description. If there is not an exact match the

system finds the closest match. This results in three classifications,

the most similar object, the category (or prototypical member of the

category), and the match score. The match score provides a measure of

quality - or similarity - for the object returned. As an example, a

spacecraft electrical systems design assistant with a built-in

identification application might be used in conjunction with a visual

scanner to search for sodder bridges or other problems within a circuit

board in a control panel or other instrumentation.

Similarity networks also provide a good knowledge representation for

resource substitution application. A resource substitution application

increases efficiency by promoting the creative use of materials. For

example, if wire wrap were needed to connect two components but was

unavailable, a resource substitution application might recommend the use

of a sodder bridge based upon the similarity between the two object's

functionality. In the same way, unobvious substitutions can be made.

Again from our electrical systems design example, an unobvious

substitution might be for the application to suggest using the heat sink

of a neighboring electrical system to be a heat source of the

environmental system. This is also an example of a change in perspective

which is discussed next.

A change in perspective provides a different look at the objects in

the similarity network. The change in perspective allows different

properties of network objects to be ranked as more important in certain

situations. In the heat sink to heat source example above, the heat sink

is viewed as a resource and not as a waste. This provides an efficient

solution to the problem of supplying heat.

The final information analysis example is knowledge acquisition.

Given situations as objects, certain types of induction may be used to

produce rules from recurring situations. This technique may be used

either on previously acquired information or dynamically in conjunction

with an expert system that learns as it goes. From the electrical systems

design example, recurring use of capacitors to act as surge protectors

might prompt the system to form a rule that "if a surge protector is

needed, then use capacitors".

Case-based Reasoning Applications

The second major category of application utilizing similarity

networks as a form of knowledge representation is case-based reasoning or

reasoning by example. A case-based reasoner performs knowledge-based

functions somewhat like those of an expert system. For example, a case-

based reasoner built upon a similarity network might perform the task of

control monitoring in a life support system.

A case-based reasoner would operate similar to the identification

application described above using situations as objects. An exact match
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would produce the outcome stored with the situation in the similarity

network. This outcome would tell the operator what to expect in the given

situation. Inexact matches produce results qualified by their similarity

scores. The case-based reasoner could also be used to hypothesize on

speculative information. If systems operators wanted to determine how

high a reading could climb before approaching a dangerous level, they

could enter potential readings to monitor the reasoner's reactions.

Case-based reasoners have several advantages over production rule

forms of expert systems. First, case-based reasoners are easy to build.

Sample situations and outcomes are entered directly into the similarity

network. Knowledge engineers are not required to supervise the

acquisition of information. Second, the initial information is retained

by the reasoner, making it possible to return to the initial data to test

assumptions. Finally, the case-based reasoner - using the match score -

knows when it does not have an appropriate solution.

Similarity networks provide an effective knowledge representation for

other types of artificial intelligence applications such as machine

learning, analogical reasoning, classification, and machine vision. More

traditional forms of computing that require information storage and

retrieval may also benefit from the power and promise of similarity

networks.

SIMILARITY NETWORKS IN SPACE APPLICATIONS

The information analysis and case-based reasoning applications

discussed above are directly relevant to space applications. Information

analysis systems can be used for electrical and environmental systems

design, foreign terrain exploration, manufacturing quality control, sensor

data identification, and systems configuration support to name a few.

Case based reasoners can be applied to systems design, control, and

monitoring, physical security advising, and flight tracking.

The following is a sample of the type of information that could be

obtained from a similarity network based application in exploratory

scanning:

Person: What is the fuzzy, round object located at the lower right

portion of the screen?

Computer: I don't know. It is metallic. (75% match score)

Person: It has an unusually high level of radioactivity. Does that help

to identify it?

Computer: Changing perspective. It may be the result of the destruction

of a nuclear-power device. By the shape, it appears to be a

cooling rod. (60%)

Person: How can we retrieve, analyze, and store the object safely?

Computer: Matches radioactive transport situation in case histories (100%

match). Retrieve with a robotic arm. Pack with aqueous
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transport solution in lead containers.

This example is hypothetical, but it is indicative of the types of systems

that can be built with similarity networks.

CURRENT IMPLEMENTATIONS

Similarity networks are currently implemented on two systems. A

research version is running on a Symbolics LISP machine at the MIT AI

Laboratory. The second is an applications-oriented version at ICF/Phase

Linear Systems. The ICF/Phase Linear system is currently being used for

three different projects. In the first project we are attempting to link

symbolic processing with neural networks. In the second we are developing

a business tracking system that monitors successful small businesses over

time. The third project is a legal assistant that works from case history
data to help solve crimes and predict terrorist attacks.

CONCLUSIONS

Similarity networks are a powerful form of knowledge representation

that can be used for a wide variety of artificial intelligence

applications. Certain types of applications, such as information analysis

and case-based reasoning, are a particularly well-suited for similarity

networks. These artificial intelligence programs are applicable to space

applications in such areas as systems design, control, and maintenance,

sensor input identification, exploration, and knowledge-based navigation

of autonomous systems. Current implementations of similarity networks

indicate that they provide a good knowledge representation for flexible,

interactive artificial intelligence applications.

REFERENCES

Bailey, D.L. Similarity Networks as a Means of Indexing and Retrieving

Descriptions. Bachelor's Thesis for the Dept. of Electrical

Engineering and Computer Science at the Massachusetts Institute of

Technology. 1986.

Winston, P.H. The Psychology of Computer Vision. McGraw-Hill Book

Company. 1975.

284



N88-16412 :

Discovery and Problem Solving:

Triangulation as a Weak Heuristic

Daniel Rochowiak

Ph#osophy

University of Alabama in Hun tstuYle

Abstract

Recently the artificial intelligence community has turned its attention to
the process of discovery and found that the history of science is a fertile

source for what Darden has called 'compiled hindsight.' Such hindsight
generates weak heuristics for discovery that do not guarantee that

discoveries will be made but do have proven worth in leading to
discoveries. Triangulation is one such heuristic that is grounded in
historical hindsight. I will explore this heuristic within the general
framework of the BACON, GLAUBER, STAHL, DALTON and SUTTON
programs. In triangulation different bases of information are compared in
an effort to identify gaps between the bases. Thus, assuming that the

bases of information are relevantly related, the gaps that are identified
should be good locations for discovery and robust hypotheses.

Introduction

Part of the fascination of the history of science rests in the accounts of

scientific discovery. The exuberant, triumphant stories of scientific

discovery give shape to our vision of scientific inquiry and substance to

the high status we accord it. However, as one begins to think about,

analyze and conceptualize the process of scientific inquiry, clouds of

suspicion gather. The triumphant stories are often stories of insight,

imagination, luck or other characteristics that seem opposed to the idea

that scientific inquiry is orderly, methodic and logical. Are scientific

discoveries works of genius unfettered by the dictates of logic and the

constraints of empirical research? Are scientific discoveries the results of

good fortune and not careful methodic analysis? If so -- if discovery

requires genius or good fortune -- and if one holds that scientific research

is the paradigm of methodic, critical, logical reasoning, then it appears

that discovery is not really a part of scientific research at all and is

certainly not it most distinguishing feature.

The tensions and oppositions of the foregoing considerations can lead to

a strict separation of the contexts of discovery and justification. Quickly

put, the distinction is a distinction between processes that give rise to new

Ideas and theories and processes that test proposed Ideas and theories.

Since it is only in testing ideas and theories that the dictates of logic and

the rules of empirical adequacy are appropriate, it is justification, and not

discovery, that is the hallmark of scientific inquiry.

If one accepts that the hallmark of scientific inquiry is its base in logic
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and standards of empirical adequacy, then if one wishes to claim that

scientific discovery is equally a part of and characteristic of that sort of

inquiry, then it must be made clear that it is possible for there to be a

logic of discovery and attempt to produce that logic.

HeurlsLlcs and the process of discovery

Heuristics are procedures that generate desired results some of the

time. Unlike algorithms, heuristics do not guarantee that a correct result

will be produced in finite time and space. More precisely, an algorithm is

a procedure composed of a finite, stepwlse sequence of instructions such

that (1) given the initially required information the procedure will be

completed in finite space and time, (2) no additional information or

creativity is required to carry out the instructions, and (3) the result of

the procedure is a correct result. This definition is clearly normative

owing to condition 3. This condition is added to prohibit consideration of

trivially algorithmic procedures. Heuristics differ from algorithms in that

the three condition do not apply in a categorical manner. Although

heuristics may often terminate with correct results in finite time and

space using only specified information, they need not always do so. The

strength of a heuristic is a function of its previous success and the
conditions under which it is used. Heuristics embody complied hLndsight

[1]. A heuristic is a strong heuristic when it has been highly successful in

the past and is being applied under appropriate conditions.

Discovery is a process that consists of generation and evaluation [4]. In

generation new ideas, hypotheses or theories are articulated or

constructed. In evaluation these hypotheses, ideas or theories are tested

for plausibility. Intuitively, plausibility differs from .justification in that

theses `judged plausible need not be .justified but all justified theses must

be plausible. The judgments of novelty in generation and plausibility in

evaluation are context dependent. For a certain body of information a

thesis may be novel and plausible, while for a different body of

information it may fail to be either. Understanding discovery as a process

combining generation and evaluation allows one to interpret scientific

inquiry as movement from the novel and plausible to the routine and

`justified.

If the notions of 'logic' and 'discovery" are understood to encompass

heuristics as well as algorithms and processes of generation and evaluation

as well as moments of insight, then it seems reasonable to believe that

there are logics of discovery. The reasonableness of this belief does not

entail that there is some unique logic of discovery. Rather it allows that

there may be several.

The artificial intelligence community has generated several programs

that embody logics of discovery. Langley et al. [3] have examined four
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particular families of programs: BACON, GLAUBER, STAHL and DALTON.

The BACON programs can be understood as generating plausible

quantitative laws. By generating a complete experimental combination of

the values of dependent and independent variables, and by attempting to

extract constants and mathematical relations, the program searches both

the space of data and the space of laws in an effort to find laws that

accurately summarize the data. The primary heuristics of the BACON

programs concern the identification of constants and linear relations. The

GLAUBER program can be understood as generating qualitative laws that

relate classes of facts. Its primary heuristics concern the formation of

classes that best summarize the relations between the predicates,

attributes and values of the data and specify the quantifiers (universal or

particular) that generate law-like claims. The STAHL program attempts to

specify the components of a compound by examining facts about reactions

and the substances present in them. The primary heuristics of this

program concern reduction, substitution and the identification of

components and compounds as being the same. The DALTON program

begins wlth data concerning reactions and the components of compounds

and attempts to formulate a model that explains the reaction. Its primary
heuristics concern the number of occurrences of atoms and compounds

and principles of conservation across reactions. Darden and Rada [2] have

devised the SUTTON program to capture the discovery of the chromosome

theory of heredity. Its primary heuristics concern part-whole relations,

identity and causal propagation.

Discovery programs that concern scientific reasoning clearly profit from

the compiled hindsight that can be extracted from the history of science.

Procedures that have proved valuable in the past can be converted into

heuristics that may be of value in the present. Each of the foregoing

discovery programs embodies procedures abstracted from the history of
science which are reformulated in terms of the such well understood

strategies as 'generate and test,' 'hill climbing' and 'means-ends analysis.'

Triangulation

The heuristics used in discovery programs are neither sufficiently

general to be used in all cases nor sufficiently mechanical to guarantee

results. Discovery heuristics are context sensitive; their strength varies

according to the context. Another heuristic that can be extracted from

the history of science turns these difficulties into virtues. Triangulation

allows for the the comparison and evaluation of different bases of

information with the goal of generating more coherent and robust

accounts of those bases. [5,6,7].

The heuristic of triangulation can be formulated as a group of related

rules concerning generation and evaluation.
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I) If there is a pattern in domain A that closely matches a pattern
in domain B and the pattern of domain B is plausible,

then use the structure of the pattern in B to generate new

patterns in A.
2) If the domain A does not have a clearly defined pattern and there

is some domain B that contains concepts that closely match those

in A,
then use the structure of the pattern in B to generate new

patterns in A.
3) Ifa "result in domain A is generated in accord with I or 2, and

the result closely matches a result in domain B,
then accept the result as plausible.

4) If the plausible results of A closely match the plausible results of
B in both structure and concepts,

then unify the domains and evaluate all of the patterns of A
and B in the new domain.

5) If plausible results are generated in a domain formed in accord

with 4,
then attempt to justify the results.

6) If there are patterns that do not hold for domains formed in
accord with 4,

then identify the conditions under which the patterns do not
hold, make these conditions the antecedents of material
conditionals and evaluate.

Triangulation is clearly a weak heuristic. There is no guarantee that

the process will be successful in entering into the context of justification.

Triangulation can generate implausible results and it can generate results

that may be erroneous. However, triangulation makes good use of the

results of other heuristics used in differing contexts, and attempts to

bridge the gaps that could be created by applying other heuristics in a

particular domain without considering the results in other domains. It

does so by generating hypotheses in accord with both structural and

conceptual analogies (rules I, 2 and 3) derived from other contexts.

Further, triangulation amplifies the coherence of results by generating a

unified domain and generating new conditionalized hypotheses (rules 4, 5

and 6). The hypotheses generated in this manner serve to address two

criteria of plausibility not directly addressed by other heuristics. First

scientific hypotheses are often deemed plausible on the basis of analogies to

patterns in other more well understood domains. Second scientific

hypotheses often gain plausibility by unifying domains even when the

unification generates patterns that are more restrictive.

The heuristic of triangulation can be extended to provide a gateway to

reasonings that are even more extensible. In the foregoing rules only the

relation of unification has been considered. Other relations are possible.

Two domains may retain their autonomy and still be relevantly related.

Neighboring domains may force constraints on what is to be considered a

plausible hypothesis in a particular domain, or a new plausible and
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justified result in a particular domain may force alteration in the

plausible patterns of other domains. By extending the heuristic of

triangulation to include such a gateway, discovery processes that are

neither data driven nor theory driven may be investigated.

Conclusion

It is reasonable to consider the context of discovery to be amenable to

rational analysis provided that the notion of logic is extended to include

heuristics and the notion of discovery is extended to include processes of

generation and evaluation. These extensions allow for the possibility of a

logic of discovery, but do not demonstrate that there is such. One way in

which it can be demonstrated that there is a logic of discovery is by

constructing programs that generate discoveries. Such programs have

been constructed. However, the heuristics of these programs focus

primarily upon the data in a single domain. The heuristic of triangulation

uses the patterns and results of one domain to generate and evaluate the
results of another domain. This heuristic focuses on the scientific values of

analogical support and increased coherence, and makes possible a gateway

to other forms of extensible reasoning. Thus, triangulation should prove to

be a valuable addition to the treasury of heuristics of discovery.
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Abstract. Commonality Analysis is a systematic attempt to reduce

costs in a large scale engineering project by discontinuing

development of certain components during the design phase. Each

discontinued component is replaced by another component which has

sufficient functionality to be considered an appropriate substi-

tute. The replacement strategy is driven by economic considera-

tions. The tool currently in use by NASA to guide the commonal-

ty analysis process, known as the System Commonality Analysis

Tool (SCAT), is based on an oversimplified model of the problem

and incorporates no knowledge acquisition component. In fact,

the process of arriving at a compromise between functionality and

economy is quite complex, with many opportunities for the

application of expert knowledge. Such knowledge is of two types:

(I) general knowledge expressable as heuristics and mathematical

laws potentially applicable to any set of components, and (2)

specific knowledge about the way in which elements of a given set

of components interrelate. Examples of both types of knowledge

are presented, and a framework is proposed for integrating the

knowledge into a more general and useable tool.

Introduction. Component part standardization has been used as a

means of increasing volume and reducing the cost of manufacturing

goods since the industrial revolution. The major cost saving was

due to mass production, which dramatically reduced the cost of

producing each unit. A side benefit was that items manufactured

in this way were cheaper and easier to repair, because

replacement parts were plentiful and reliable. Commonality is a

similar technique, applied at a higher level. Commonality

analysis attempts to standardize components on a system-wide

basis, or across multiple systems in a large engineering effort.

The components involved are more complex, serving multiple

functions. For example, Boeing Corporation has saved millions of

dollars in development, production, and maintenance costs, as

well as in pilot training, by employing identical cockpits in the

Boeing 757 and 767 aircraft. The earlier in a large engineering

effort that the principle of commonality is employed, the greater

the potential cost-saving benefits.

In a general sense, commonality analysis refers to an objective

evaluation of a large and complex project at a fairly early stage

in its design with the goal of finding opportunities to apply the

principle of commonality. Much of what can be called commonality

analysis is highly creative and has no fixed methodology. Howev-
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er, there is one activity that appears to run through all such

analyses as a unifying thread: the direct comparison of two or

more competing designs, to ascertain the feasibility of eliminat-

ing some of those designs. Often the functionality of an item

can be extended in such a way that it may serve other purposes

while continuing to function in the original fashion as well. It

may also be possible to use multiple copies of one item in place

of another. In still other cases it may be possible to make a

simple substitution, eliminating an item whose functionality can

be completely assumed by another.

Current Software Solutions. Only one type of comparison lends

itself easily to automation via software, and that is the type of

comparison which strives to evaluate the advisability of

substituting one or more copies of one item for another, without

examining the possibility of redesigning or extending the

functionality of any items. In this case it is often sufficient

to simply evaluate a cost function. In the case of a two-way

comparison, say between item a and item b, the cost function must

be evaluated for three situations: that in which a and b are

uniquely implemented, that in which a substitutes for b, and that

in which b substitutes for a. The three numbers are compared,

and the lower cost wins. This simple strategy is the basis for a

software tool currently in use by NASA, called the System

Commonality Analysis Tool, or SCAT (See [I]). SCAT evaluates a

set of n objects by computing n+l costs: the so-called "unique

option", plus the n possible substitution strategies.

Of course, cost functions must be given sufficient data on each

item in order to give realistic predictions of comparative costs.

The gathering and management of that data is another need which

indicates a software solution. The SCAT program incorporates

data management facilities. In fact, SCAT is written as a front

end to a commercial database management system (DBMS). SCAT

obtains the data it needs for its cost analyses from files
created with the DBMS functions.

SCAT operates as follows. Design data on hardware and/or soft-

ware components are captured as records in commonality databases.

Each such database is created and maintained by a database

administrator familiar with the project. A separate record is

made for each item which may be a candidate for comparative cost

analysis. The attributes of a record must always include those

required by the SCAT cost function. To insure this, the databas_

administrator is constrained to create the database via the SCAT

front end, which automatically supplies the needed attributes

with each new database. However, there is no requirement that

all items entered into a database have identical, or even very

similar, functional characteristics. Nor is there any capability
within SCAT to search for sets of items with related functional

characteristics. For its comparative cost analyses, SCAT relies

on the database administrator to communicate to it precisely the
subset of n items which it is to evaluate. This is done with

standard database subsetting operations, communicated via a
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series of menus which painstakingly prompt for the necessary
information to construct a relational expression to be used as a

query. For those with more relational database experience,

direct access to the DBMS proper is provided.

Once the subset database is identified which is to be subjected

to analysis, the SCAT user may request a cost analysis on that
subset. SCAT then assumes that the items in the subset have

identical functionality, and provides the requested n+l cost

figures, sorted in increasing order. The final assumption is
that the most "cost effective" alternative will be a viable

alternative.

A More General Formulation. Let _ be the relation, defined on

the set of all records in a given commonality database, as a_b if

and only if a is a feasible substitute for b. We call _ the

feasibility relation on that set of records. The properties of

the relation _ depend entirely on the characteristics of the

given database. _ may or may not be symmetric, antisymmetric, or

transitive. As a convention, we take a_a to be true for all

items a in the database (that is, _ is always reflexive). By

rights, it is the connected components of the relation _ that

ought to be subjected to analysis. In other words, if a record x

is in a given subset being subjected to analysis, we would wish

that all records y be also in the subset, where there is a series

of records xl, x2, ..., x,, for which x_ = x, x_ = y, and for

each i = I, 2, ..., m-l, either xi_xi+1 or xi+1_xi .

Let us assume that we have isolated one of these subsets, say A,

and that it is in fact a connected component of _. The form of

the relation on set A may be arbitrarily complex. Let us consider

the simple case of a two-element set, the two elements a and b we

referred to in our discussion of SCAT, above. If both a_b and

b_a are true, then all three SCAT options make sense, and we

choose the least costly. If only one of them is true, for exam-

ple if a_b and not b_a, then we may or may not choose to replace

b by a, even though _ permits us to do so. It may be more

cost-effective to produce the two items separately. However, if

we run a SCAT analysis on the set, the recommendation may be to

substitute b for a, even though that is not a viable alternative.

SCAT's recommendations must be filtered through a human expert,

who knows which solutions make sense and which do not. Now let

us add a third element, c, to the set. An interesting fact here

is that the most economical alternative may be to substitute a

for c and produce b uniquely. This may be true because of the

form of the relation _. For example, it may be that the only two

non-reflexive relationships are a_c and b_c. However, depending

on which cost function one uses, such a twofold strategy may be

called for even if _ freely allows substitutions of all kinds in

the set {a,b,c}.

The most general substitution strategy is represented by a pair

(w,T), where 7 is a partition of the set A and T is a set of

representatives of 7. In the example above, the partition is 7 =
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{{a,c},{b}} and the set of representatives is T = {a,b}. If _ =

{KI, K2 ..... K, }, and T = {tl, t2, ..., t, }, then it must be

true that for each i = I, 2, ..., m, tiax for all x in Ki. For

this reason we call (_,T) an a-partition.

A SCAT-type solution can now be seen as a special case of this

general form. It is the case where the partition _ and the set T

have only one element each. That is, _ = {A} and T = {t} for

some element t of A.

The Need for a New Methodology. Clearly, techniques for

generating the more general form of solution described above will

be much more complex than the simple SCAT strategy. An initial

collection of knowledge about s-partitions and cost functions on

s-partitions is available in the form of a series of propositions

contained in a paper [2] submitted by the author to the journal,

Operations Research. Several of these propositions suggest

algorithms which may be applied to provide a sub-optimal

solution, which may then be refined by heuristic techniques.

Because of the very general nature of the problem, there probably

is no deterministic algorithm which will yield an optimal

solution in every case, and each case must be examined in light

of its own properties. An eclectic solution strategy is called

for. Logic programming is the obvious tool for investigating

such solution strategies because of the natural way in which

propositional knowledge may be encoded.

Capturing the Feasibility Relation. The perfecting of a

generalized solution strategy for commonality analysis is an

intriguing problem, but there is a companion problem which is

just as intriguing. To be able to say that widget a is a

feasible substitute for widget b clearly requires expert

knowledge about widgets. To search through a database of

hundreds of widget designs and produce a set of twelve which are

closely related to the extent that a SCAT-type analysis may be

performed on that set also requires a certain level of expertise.

Is there any hope that this process may yield to a software

solution? If so, then a knowledge base component is necessary.

It is possible to capture the knowledge about a and store it as

an integral part of the commonality database itself. Clearly,

there must be a close physical association between the data and

the knowledge whereby the relation a on that data may be

constructed. We propose, then, that every commonality database

be accompanied by a companion knowledge base. The construction

and maintenance of the knowledge base would be the responsibility

of the database administrator.

Let us examine how the knowledge might be encoded. In the SCAT

environment, the user is encouraged to find a set of items for

analysis by sorting on various attributes and scanning the sorted

list for potentially common sets of items. When such a group

appears, the user may communicate to SCAT the set he or she is

interested in by means of a relational expression which
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identifies the desired set. If the decisions concerning how to
sort and group the data are made in advance, the entire process

of selecting a subset for analysis can be carried out in a single

automated operation.

But let us not confine ourselves to SCAT-type methodology. What

we are trying to do is to capture the feasibility relation _.

Any information about a will be useful, even if it consists only

of a single pair (a,b) of records. The forms taken by the

knowledge will be varied. The following list covers some of

those forms.

Type of
Information

pair

sort

group

relational expressions

Parameters

Needed

<record key> I, <record key>_2

<attribute>,<direction> ....

<attribute>,<range of values>

<attribute>,<relation>

<attribute>,<tolerance>

No specific form for

parameters. May use a

specially designed prefix or

postfix coding scheme.

Conclusions. The Commonality Analysis problem requires expert

knowledge at all phases of the solution process. The creation of

databases, the maintenance of data and knowledge about the data,

the selection of commonality alternatives, and the application of

solution strategies may all profit from software solutions that

incorporate knowledge. The report [3] referenced below presents

an overall strategy for the incorporation of knowledge.
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ABSTRACT

Qualitative Modeling is the study of how the phy-
sical world behaves. These physical models accept par-
tial descriptions of the world and output the possible

chan_es. Current s[stems assume that the model is
statlc, and that physlcal entltles do not effect change
into the world. For instance a certain qualitative

systems can diagnose faulty electrical circuits, but
cannot design plans to rewire circuits to change their
behavior. This paper describes an approach to planning
in physical domains and a working implementation which
integrates qualitative models with a temporal
interval-based planner. The planner constructs plans

involvin_ physical quantities and their behavioral
descriptlons.

!. INTRODUCTION

This paper describes a system for the representation and

solution of dynamic planning problems. The representation of
physical entit_es an qualitative models provides an excellent
forum for storing definitional and behavioral information about.a
particular domain [2,8,10]. This knowledge is easily coupled, _n
the model, with a temporal component permitting the representa-
tion of entity behavior and interaction over time. The temporal
capability is accomplished with the introduction of a time inter-
val into the qualitative knowledge model. Inference mechanisms
that usually run with the detailed qualitative information are
now time-qualified, adding another "dimension" to the knowledge

model [6,10]. The prototype system developed to illustrate these
concepts is described, and, finally, directions for future work
are outlined.

_. QUALITATIVE MODELS

Qualitative models are aptly described by Williams[10] as a

_hysical system with initial conditions whose analysis typically
_nvolves (1) a description of the temporal behavior of the
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system's state variables, in terms of a particular qualitative
representation, and (2) an explanation how this behavior came
about.

In more detail, a physical system consists of a set of state
variables (e.g., force and acceleration) and a system of equa-
tions, parameterized by time, which describe the interactions
between these variables (e.g., f(t) = ma(t)). A qualitative
representation partitions the range of values for a particular
quantity into a set of interesting regions (e.g., positive, nega-
tive, or zero). The particular representation selected depends
on properties of the domain and the goals of the analysis.

The behavior of the system can be viewed in terms of a qual-
itative state diagram, where each state describes the qualitative
value of every state variable in the system. The behavior of the
system over time can be viewed as a particular path through this
state diagram. Each state along this path represents an interval

of time over which the system's state variables maintain their
values. The duration of this interval is dictated by principles
involving continuity and rates of change.[4,6,10]

The system changes state whenever any state variable changes
its qualitative value. The values in the next state are then

determined by (i) identifying those _uantities which cannot
change value !e.g., if q is positive in a particular state and
its derivative is positive or zero then it will remain positive
in the next state), and (2) propagating the effects of those
quantities that are known to change. The qualitative reasoning
system also keeps track of the reason for every deduction in (i)
or (2), using the record, among other things, to generate expla-
nations (e.g., "an increase in force causes the mass to
accelerate").[5,6,10]

Components in a qualitative model may be expressed as an
object containing five elements[3,9]: individual objects involved
in the process, preconditions (outside of the object knowledge)
on the behavior, quantity conditions (inequalities), relations
asserted as object behavior, and influences the behavior has on
quantities.

3. TEMPORAL INTERVALS

The planning system maintains a list of entity qualities or
properties qualified by intervals over which they hold. The

planner uses a time logic[l] to maintain the temporal relation-
ships between intervals. Table 1 shows the possible values for
different relations.

In operator and rules defined within the system, intervals
are represented by symbols starting with '$', while variables are
represented by symbols starting with '?'. The temporal relation
between two intervals is expressed as a disjunction and written
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in a list (e.g., (:< :>) is used to mean "is before or after").
Different properties or facts about an object are paired with the
same interval over which they hold. Thus, (ON A TABLE) $INTER-
VALI denotes a fact (ON A TABLE) which holds over the time inter-
val $INTERVALI.

Value Description Inverse Description
:< before :> after

:M meets :MI met by
:O overlaps :OI overlapped by
:S starts :SI started by
:F finishs :FI finished by
:D during :DI encloses

:= equals := equals

TABLE i: Interval Relations and Inverses[l].

An operator defines an action the object can perform to

change its properties in the world. The planning system uses a
model of action[l] with temporally qualified expresslons describ-
ing operator preconditions and effects. For instance, Figure 1
defines an operator PICKUP which can be applied to an object if
it is clear and resting on something. PICKUP's effects clear the
object's old location. The constraints field is used to restrict
the temporal relations among facts matching with the precondi-
tions and effects.

OPERATOR: pickup
PRECONDITIONS: (clear ?object) $clear-object

(on ?object $surface) Son
EFFECTS: (pickup ?object ?surface) Spickup

(clear ?surface) $clear-surface
CONSTRAINTS: $clear-object (:M) Spickup

Son (:0) $pickup
Son (:M) $clear-surface

FIGURE i: Definition of Operator PICKUP[3].

A rule models temporal laws of the domain. The planning
system uses rules as backward chaining operators for solving
goals, as well as forward chaining, temporally constrained infer-
ence rules. Thus, with the object behavior modeled as rules, the
system can both plan their action and infer their results.

Rule definitions are similar to operator definitions, with
antecedents behaving like operator preconditions, consequents
behaving like operator effects, and consequence constraints
behaving like operator constraints. The additional field, tem-
poral conditions, places preconditions on the temporal relations
among facts matching the antecedents. The time logic supports
temporal intersections, allowing a rule to be inhibited until
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antecedents are known to intersect (meaning their relation is a

subset of (:S :SI :F :FI :D :DI :O :OI :=)) and to assert conse-
quents over their intersection. Figure 2 demonstrates these
features. Given (ON A B) and (ON B C) whose intervals intersect,
(OVER A C) is asserted during their intersection.[3,9]

RULE
Antecedents: (ON ?x ?y) $on-xy

(ON ?y ?z) $on-yz

Temporal Conditions:
Exists (INTERSECTION $on-xy $on-yz)

called $intersection

Consequents: (OVER ?x ?z) $intersection
Consequent Constraints:

Figure 2: A Temporally Qualified Inference Rule[3].

4. APPLICATION

The constructs of the previous section are part of a simple

temporal planning example to operate on selected objects. Plans
can be generated to "pick-up" A, B, or C. This example is, how-
ever, very different from the typical "blocks world" environment

in two respects, each object have been physicall[ described and

temporally _alified. The physlcal descriptlon portrayed the
objects abillty to placed over one another and even how many may
be stack above each particular object. This aspect of the system
has not been exploited in order to concentrate on temporal plan-

ning which give the intervals in which each object resides over
another object. Figure 3 shows the script generated by the
planner to meet a goal in this simple system.

Goal: PICK-UP A tl
Solution: Apply the rule to see if any objects are over A at tl.

Goal: PICK-UP B
Solution: Apply the rule to see if any objects are over B at tl.

Goal PICK-UP C
Solution: Apply the rule to see if any objects are over C at tl.

Action: pick-up C
Action: pick-up B

Action: pick-up A

FIGURE 3: Output for Goal to Pick Up Object A.

Qualitative models such as those described in this paper
will be necessary for detailed planning operations onboard space
station and for many other space applications. Planning systems

using temporally-qualified structural and behavioral knowledge
will be able to plan the independent actions of IVA or EVA
robots, is needed to function in a dynamic, time-varying,
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environment[7]. Qualitative systems will also be able to gen-
erate complex plans for multiple experiment packages, using
knowledge of core subsystem properties to keep operations within
established constraints.

5. CONCLUSIONS AN___DDFUTURE DIRECTIONS

Qualitative modeling represents the physical and temporal
information required for dynamic planning applications. Charac-

teristic and behavioral info.rmation descrlbe-an entity in term of
properties which are used in different time qualified rules and
operators to generate plans to achieve desired goals. A simple
example of temporal reasoning about physical objects was

presented, but examples of more sophisticated thermal and electr-
ical systems of entmties have been accomplmshed.

Work of this nature is helpful in developing and evaluating
representations for qualltative modeling and planning, that is

controlling the effects of time, space, and general properties of
physical objects [6,7] Current efforts in the design of the
space systems are requiring the capture detailed knowledge of

system design[7], so new space systems may incorporate advanced
knowledge-based appllcations, such as plannlng systems driven by
qualitative models• Accordingly, this research will continue to

explore detailed representations within domain and world models,
and investigate different planning strategies for reasoning and
control•

•

•

•

•

•
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ABSTRACT

This paper describes various operatlona] aspects of the
ERBS-TDRSS Contact Planning System. The ERBS-TDRSS Contact
Planning System is an expert system which has been used
operationally since June 1987 by the Earth Radiation Budget
Satellite (ERBS) Flight Operations Team (FOT) at Goddard Space
Flight Center to build weekly schedules of requests for service
from the Tracking and Data Relay Satellite System (TDRSS). The
ERBS-TDRSS Contact Planning System, which ts written enttre]y
tn the C language and runs on an IBM PC-AT, reads ERBS orbit
prediction data from a 9-track tape and builds a 1-week
schedule of requests for TDRSS service in three minutes, with
additional time required to prtnt the schedule that has been
built. By comparison, the ERBS FOT scheduling expert
previously had to spend over six hours per week to do this same
task. Several enhancements have been made to the system since
tt has become operational. In addition, modifications have
been made to the knowledge bases of the system to accomodate
changing operational scenarios and mission constraints imposed
by the TDRSS Network Control Center (NCC). Contributing to the
operational success of thts planning/scheduling expert system
are: (1) the resource window generator which limits search
through the orbtt data, (2) the custom-built strategies
interpreter which applies various strategies to try to schedule
primary and alternative events, (3) the custom-built inference

engine (TIE1) which automatically checks each event proposed by
the strategies interpreter against mission-specific scheduling
constraints, (4) the custom-built user interface to the system,
and (5) the report generator which produces TDRSS schedule
requests In the format required by the NCC.

INTRODUCTION

Thts paper begins by describing the basic operation of the
ERBS-TDRSS Contact Planning System (ERBS-TDRSS CPS). Next,

significant enhancements to the ERBS-TDRSS CPS and changes in
Its operational characteristics are discussed. Finally, some
conclusions based on several months of operational experience
are presented.

303



A schematic diagram of the ERBS-TDRSS CPS is shown in Figure 1.
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Figure i: Schematic Diagram of the ERBS-TDRSS Contact

Planning System.

In its operation, the ERBS-TDRSS CPS first directs a tape
drive to read selected orbital information from a 9-track

Ground Track Orbit Prediction data tape obtained from the GSFC

Flight Dynamics Facility. Orbital information from the tape is
written to the PC that runs the ERBS-TDRSS CPS. This data

includes such items as antenna viewing angles and start and

stop dates and times for each orbit and daylight period.

Next, resource window generator routines on the PC apply

scheduling heuristics to the orbital data to identify resource

windows. This process improves overall system efficiency by

reducing the amount of data which the strategies interpreter

must search through to find TDRSS contact periods.

As the ERBS-TDRSS CPS is run In its automatic scheduling

mode, resource window information is used along with system

configuration information from a configuration file, scheduling

strategies from the strategies KB, and scheduling constraints
from the constraint KB to build a 1-week schedule of TDRSS

requests. As the strategies interpreter applies primary and

alternative strategies to find valid candidates for TDRSS
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contacts, tentative event Information Is passed to the
constraint checker, the Transportable Inference Engine (TIE1).
TIE1 checks this event information against mission-specific
scheduling constraints In the constraint
whether the candidate event should be sch
prtmary event strategy is rejected by the co
the strategies Interpreter automatically t
schedullng strategies and passes updated event
to the constraint checker. This process is
event until it is scheduled or the str
exhausted.

KB to determine
eduled. If the
nstraint checker,
ries alternative
information back

repeated for each

ategies list is

After a i-week schedule has been produced in the automatic

scheduling mode, the ERBS-TDRSS CPS can be used in the
interactive scheduling mode. In this mode, the Interactive

Experimenter Planning System (IEPS) user interface provides

graphical displays of event timelines and user-friendly editing
capabilities.

During interactive scheduling mode operations, the

constraint checker is automatically invoked to help the ERBS
FOT planner add or delete individual events in accordance with

the scheduling constraints in the constraint KB. When there is

a scheduling conflict, TIE1 produces a diagnostic message to

explain why the event cannot be scheduled. By entering a
password, the ERBS FOT planner can override the constraint

checker and force the system to schedule the event.

Finally, report generation routines in the ERBS-TDRSS CPS

are used to produce reports including: selected data tape

records, resource window listings, TDRSS contact request

worksheets, and specially formatted Schedule Add Requests
(SARs). The SARs that are produced are sent (via a Mission

Planning Terminal) to the NCC.

Three papers [1], [2], and [3] that provide additional

information about the ERBS-TDRSS Contact Planning System are
listed in the reference section.

OPERATIONAL EXPERIENCES

When the ERBS-TDRSS CPS began operating, Ground Track Orbit

Prediction data from a 9-track tape was read into an IBM

mainframe in the Command Management Facility and then
transferred (via a modem) to the PC in the ERBS FOT area. It

took about 20 to 30 minutes to transmit the data required for a

1-week schedule. To enhance the ERBS-TDRSS CPS, a tape drive

with flexible software was added. This tape drive allowed

orbital data for one week to be read from a 9-track tape in

less than a minute. In addition, selected orbital data tape

records and resource window listings could be quickly verified
by the ERBS FOT planner.
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After the ERBS-TDRSS CPS operations began, it became
evident that the ERBS FOT planner was not comfortable with the
multitude of DOS operating system commands required to run the
ERBS-TDRSS CPS. To make the control of the ERBS-TDRSS CPS more

user friendly, a commercial product was used for adding a high
level menu-driven user interface to the system. This interface
includes options for: loading the data tape, selecting the
scheduling mode (automatic or interactive), entering start

dates, selecting antenna service, running the scheduling

process, and printing reports. In addition, since the

orientation of the spacecraft relative to its direction of

travel affects its ability to view TDRSS (and the spacecraft is

occasionally "flipped" end-for-end), a menu prompts the ERBS

FOT planner at the start of each scheduling session to specify

the orientation of the spacecraft and when the spacecraft is

scheduled to be flipped.

In response to changing scheduling requirements imposed on
the ERBS Flight Operations Team, significant alterations were
made to the knowledge bases of the ERBS-TDRSS CPS. For
example, several new types of Tape Recorder Dump (TRU Dump) and
Stratospheric Aerosol and Gas Experiment (SAGE) events (along
with their scheduling strategies and constraints) were added to
the knowledge bases. Also, the durations of some tape recorder
dump events were changed and separate knowledge bases for
scheduling SAGE events during periods of "full-sun" were
added. These knowledge base changes provided new scheduling
capabilities for the ERBS-TDRSS CPS.

CONCLUSIONS

Although the ERBS-TDRSS CPS has only been operational for

several months, significant changes have been made to the

system. Some of these changes, such as the addition of the

tape drive and the menu system, were made to increase the

performance of the system and to make the system more user

friendly.

Other changes were made to support new scheduling

requirements imposed on the ERBS FOT and resulted in new and

different operating capabilities for the system. It is

expected that maintenance expertise to support changing

scheduling requirements will be required for the life of the

mission. For example, when TDRS-West becomes operational, the

ERBS-TDRSS CPS will probably have to be modified.

An important aspect of maintaining the ERBS-TDRSS CPS has

been the ability to add new scheduling capabilities by editing
its knowledge bases. For example, rules and frames in the

strategies and constraint knowledge bases were quickly and

easily modified to provide capabilities for scheduling several

new types of events, each with its own antenna configurations,
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Modifications such as these would likely have been much more
difficult and time consuming to make in a system with a more
conventional software architecture,

Another important factor in maintaining the ERBS-TDRSS CPS was
having access to the source code. For example, changes to the
source code were required in order to enhance the resource
window generator. Most commercial expert system shells do not
include access to the source code.

Finally, having a portable, C-based system that runs on
conventional hardware, such as IBM PC-ATs under DOS or MC/68020

workstations under UNIX, has been very helpful. Maintenance

and development work has been done mainly on the 68020-based

workstation utilizing its powerful development environment.

The updated source code was then ported to the ERBS-TDRSS CPS

PC and recompiled.
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Abstract. This paper describes a system for reasoning about robotic assembly tasks. The

first element of this system is a facility for itemizing the constraints which determine the
admissible orderings over the activities to be sequenced. The second element is a facility

which partitions the activities into independent subtasks and produces a set of admissible

strategies for each. Finally the system has facilities for constructing an admissible sequence

of activities which is consistent with the given constraints. This can be done off-line, in

advance of task execution, or it can be done incrementally, at execution time, according
to conditions in the execution environment. The language of temporal constraints and

the methods of inference presented in related papers are summarized. It is shown how

functional and spatial relationships between components impose temporal constraints on

the order of assembly and how temporal constraints then imply admissible strategies and

feasible sequences.

Introduction

Construction of the Space Station requires an unprecedented degree of advanced plan-

ning and scheduling. The sequence of construction activities must be consistent with the
functional and spatial relationships between the components of the space station, it must

be consistent with feasible methods for delivering and fabricating the structure, and it

must be consistent with high-level schedules and timetables. It must be possible to pro-

duce schedules which satisfy these constraints and it must be possible to quickly produce

revised schedules in the event of problems and delays.

In this context the problem is not simply to produce a single schedule of construction

activities, but rather to carry the production plan through multiple levels of refinement.

In its most general form the plan may be simply a collection of the constraints which

must be satisfied. After some refinement the plan may be partitioned into independent

subtasks and the plans for those subtasks may be factored into strategies. Ultimately, all

of the construction activities will be mapped onto intervals of a timeline. When problems

or delays occur it should be possible to revise the schedule according to the constraints

imposed by a higher level in the scheduling hierarchy. This view of planning and scheduling

is supported by a system for reasoning about robotic assembly tasks described below.

Research supported in part by the McDonnell Douglas Independent Research and

Development Program.
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The Representation of Robotic Assembly Tasks

Robotic assembly is fundamentally a serial process. Although the steps of an as-

sembly can be ordered in a variety of ways, a robot typicMly performs an assembly one
step at a time. This has two important implications. First, the analysis of assembly

tasks is simplified. Problems of synchronization and concurrency are found only in the

interaction between processes not within the assembly task itself. Second, the execu-

tion of assembly tasks is simplified. The flexibility in the ordering of the assembly steps

can be exploited to adapt the sequence of operations to execution time conditions [Fox

and Kempf, 1986a]. However, the ability to reason about the execution of an assembly

task depends intimately upon the form and content of some abstract representation of

that task. Proposed representations include state transition networks [Whitney], and-or

graphs [deMello and Sanderson], precedence diagrams [Prenting and Battaglin], Petri nets

[Drummond] , [Malcolm and Fothergill], and temporal constraints [Fox and Kempf, 1986b].

These and other representations are discussed in detM1 in another paper [Fox, 1987a]. The

remainder of this paper will focus on the derivation and analysis of temporal constraints.

The Derivation of Temporal Constraints

Allen defines 13 relationships that can exist between two intervals of time [Allen].
However, the serial execution o£ an assembly task T reduces the relationship between any

two steps to exactly two possibilities: Vx, y E T, (x < y) V (y < x) A -_((x < y) A (y < x))

(serial axiom) where the expression (x < y) denotes the constraint that step x must

strictly precede step y. In addition, the transitive nature of time determines the effect

of combinations of relationships: Vx, y, z E T, (x < y) A (y < z) ===>(x < z) (transitive

axiom).

The constraints which govern the execution of assembly task can be stated as a con-

junction of the relationships which exist between steps of the task. In some cases the order

of two steps is unconstrained and it is unnecessary to explicitly state their relationship. It

is simply assumed that their order of execution is governed by the serial axiom. In other

cases exactly one of the two possible orderings is required and it is sufficient to state that

relationship as a primitive constraint of the form (x < y). In more complicated cases the
necessary ordering over two steps will be conditional upon the ordering of other steps.

In such situations it will be necessary to state the relationships among these steps using

combinations of primitive constraint expressions and the logical operators A (and), V

(or), -_ (not), and ==> (implies).

The underlying physical relationships which determine the necessary temporal con-

straints are varied. While not exhaustive, a number of cases will be enumerated in order

to suggest the range of possibilities.

Some of the relationships between the objects to be manipulated determine enabling

conditions for steps of the assembly task. For example, the installation of a major com-

ponent of an assembly then enables the installation of those parts that are attached to or

supported by that part. In other situations, the necessary support for a part may be a

collection of other parts. In more complex cases there may exist multiple distinct strate-

gies or methods for completing an assembly and a given step may be enabled by different

conditions under each strategy.

310



In a similar fashion, some of the relationships between the objects to be manipulated

determine disabling conditions for steps of the assembly task. In some cases the installation
of a part may prevent the subsequent installation of other parts. In other cases, the

installation of a part may be prevented by the installation of any one of several other
parts. Occasionally the destination for a part can be approached from several different

directions and the installation of that part will be disabled only after every one of several

other parts has been installed.

It is not unusual for some steps of the assembly to be temporarily disabled. For

example, the installation of a special jig may be necessary for some stage of an assembly

but it may interfere with some otherwise admissible operations. Those operations must

be performed either before the installation of the jig or after its removal but they are

impossible while it is in place. In other cases the assembly may go through fragile or

unstable states when forceful or agitating operations should be avoided. Although they

may be otherwise enabled, the rough operations should either precede or follow all of the

delicate operations.

The specification of an assembly task begins with an analysis of the objects to be

manipulated and the operations to be performed. That analysis will reveal the significant

physical relationships which enable and disable the various operations. The result of that

analysis will be a logical formula composed of primitive ordering constraints of the form

(x < y) and the logical operators A (and), V (or),--1 (not), and _ (implies). Example

assembly tasks are presented elsewhere [Fox 1987a],[Fox and Kempf, 19865].

While this analysis may be a human activity, the translation of physical relation-

ships into temporal constraints can be automated to a certain degree. Common physical

relationships can be catalogued along with methods for translating them into temporal

constraints. The catalogue implemented by the author includes the generic relationships

enabled-by, disabled-by, and prohibited-by as well as more specific relationships such as

supported-by, and attached-to. These are translated into temporal constraints by simple
macro substitution.

The specification process is not without difficulty. It is possible that a significant

relationship among the parts or operations to be performed will be encountered which

has not been previously catalogued. In that case the analyst must directly produce a

formula which defines the admissible ordering of the operations involved. There is also

the possibility that the analyst will overlook some significant constraint or erroneously

include some unnecessary constraint. Some of these difficulties can be avoided by deriving

temporal constraints from an analysis of certain significant states of the given task [Fox,

1987b].

The Derivation of Subtasks, Strategies, and Sequences

Given a task composed of a set of activities and a temporal constraint expression which

governs their execution, it is quite simple to partition the activities into independent sub-

tasks. First, extract all of the primitive constraints that occur in the given constraint

expression (regardless of the logical structure of the formula). Then, for each primitive

constraint (x < y), construct the constraint (x _ y) which denotes the fact that x is

related to y. The relation _ is reflexive, symmetric, and transitive, thereby satisfying the
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requirements of an equivalence relation. Next, form the closure of the equivalence relation

defined by _. Each of the resulting equivalence classes contains only activities that are

related by some combination of ordering constraints. Moreover, there are no ordering

constraints which cross the boundaries of the equivalence classes. Hence, the execution of

the given task can be treated as the interleaved execution of multiple independent subtasks
as defined by the equivalence classes.

Given a task composed of a set of activities and a temporal constraint expression

which governs their execution, it is a non-trivial task to construct a feasible execution se-

quence. It is simple to demonstrate that the problem of determining the satisfiability of an

arbitrary temporal constraint expression is NP-Complete and the process of determining

an admissible first step is NP-Hard. However, some temporal constraint expressions are

easy to analyze. Any task which can be represented by a conjunction of primitive con-

straints (i.e., a strict partial order) can be analyzed and sequenced by simple polynomial

time algorithms. Although not every task can be reduced to such a simple representation,

every task can be represented as the union of a set of conjunctive plans (i.e., a disjunction

of conjunctions of primitive constraints) which together cover every admissible sequence

of operations. Most algorithms which can be applied to conjunctive constraint expressions

can be adapted to the more general disjunctive normal form.

Given an arbitrary temporal constraint expression, an equivalent disjunctive normal

form constraint expression can be produced by purely algebraic means. Since this is an

NP-Complete language, there are two hidden perils associated with this process. If simple,

direct methods are used to create the disjunctive normal form, then the size of the resulting

expression can be prohibitively large; if more sophisticated methods are used to produce

the smallest possible disjunctive normal form, then the time required may be prohibitive.

For many problems, careful use of heuristic methods reported previously [Fox 1987a] yield
a reasonably small disjunctive normal-form constraint expression in a reasonable amount
of time.

The disjunctive normal form of a given temporal constraint expression has several im-

portant interpretations. Like the original constraint expression, it still represents the task

to be accomplished; it still represents the constraints over the the individual operations

to be performed; and it still implicitly represents the set of admissible sequences for per-

forming those operations. The added interpretation that can be applied to the disjunctive

normal form is that each conjunctive clause can be interpreted as a strategy for performing

the given task. This can be particularly useful to engineers responsible for designing and

managing the execution of complex tasks. They can first focus on the constraints over the

constituent operations. Then they can verify and refine the specification of the task by

analyzing the admissible strategies which are produced by this normalization. Methods

for analyzing the resulting strategies are presented elsewhere [Fox, 1987a].

The normalization and analysis described above serves only one purpose: the pro-

duction of a set of constraints which circumscribe the admissible sequences over a set of

operations and the transformation of those constraints into a form suitable for processes

of sequencing. The sequence of operations can be determined off-line, prior to execution

time, according to expected run-time conditions; or on-line, at execution time, according
to actual run-time conditions.
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A feasible sequence of operations under a single strategy can be derived from the

process of pebbling the nodes of a directed acyclic graph derived from that strategy. Each
step of the task is translated into a node of the graph and each primitive ordering constraint

(x < y) is translated into a directed arc from node x to node y. Pebbling is governed

by a single rule: a node can be pebbled only if all of its predecessor nodes have been

previously pebbled. An initial node, with no predecessors, can be pebbled at any time. By

analogy, the set of steps that can be executed next in some state of the task correspond

exactly to the set of nodes that can be pebbled next in the analagous state of the graph.

The process is complete when all the nodes are covered. The set of all possible pebbling

sequences is identical to the set of all possible execution sequences for that strategy. Simple

methods have been developed which extend the pebbling analogy to the execution of a task

composed of multiple strategies [Fox, 1987a].

Conclusion

A method for representing robotic assembly tasks based upon temporal constraints

has been presented. Methods for deriving those constraints from enabling and disabling

physical relationships have been summarized along with methods for factoring a task into

independent subtasks, strategies, and feasible sequences of operations.
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O. ABSTRACT

This paper presents three aspects of planning activities in

space. These include, (i) generating plans efficiently, (2)

coordinating actions among multiple agents, and (3) recovering

from plan execution errors. Each aspect will be discussed

separately.

i. INTRODUCTION

An autonomous space station is required to formulate its own

action plan after receiving a mission command. In order to

accomplish this goal, a system that is able to generate action

plans for various agents, coordinate actions among agents, and

decide on recovery plans for execution errors will be required.

This paper describes some research works of these areas. The

author assumes that the reader already has a basic knowledge on

planning.

2. A TWO-PHASE PLANNING STRATEGY

This approach would generate plans efficiently according to

the goal requirements. In this strategy, a planning process is

divided into two phases, goal analysis and plan generation. The

idea of goal analysis is to reduce the fruitless search space at

the start of the planning process and to provide a correct

outline for the generation of plans. In the block stacking

example of Figure I, most human experts know that in order to

build a structure, the lower part has to be built first and the

lowest block has to be put on the table. With a simple analysis

using these two heuristic rules, an expert can conclude quickly
that (ON B C) should be achieved before (ON A B) and that C

should stay on the table. If a planning system also adopts this

heuristic analysis, the same conclusion can also be reached. We

believe that this analysis is close to a human planning model and

is more efficient for solving a problem.

In the plan generation phase, a goal-oriented hierarchical

operator representation technique is used to avoid the time

consuming operator searching process. Usually, a goal can be

achieved by several different operators; but some of them may not

be applicable at a specific instance, and some of them may have

side effects that would cause problems later. Trail-and-error

search process is used to select operators in most conventional

systems. This time-consuming search process can be avoided.

First, if each operator is named by the goal it would achieve,

there is no need to search for operator candidates. Secondly,

within each operator representation, a sequence of detailed
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((ONC B)

(ON B A))

InitialState Goal State

Figure I A simple block stacking problem.

(INROOM $A $B)

NIL (TOGOINTO SB) (TOHOLD SA) (TOGOINTO SB) (PUTDOWN SA)

Figure 2 Operator hierarchy of (TNROOM SA $B)

operators can be selected to satisfy special requirements of

different situations. A sample operator hierarchy is shown in

Figure 2. In this hierarchy, the goal is to move object $A into

room $B. Since the name and the goal of the operator are

identical, this representation is considered goal-oriented. In

this example (INROOM $A $B) must be refined into a sequence of

detailed operators before its execution. The sequence selection

is determined by the requirements of the goal and the world

state. Here, if $A is an ENV (environmental) object, like DOOR,

which can not be moved, then nothing has to be done. If $A is a

ROBOT, which can move, then the ROBOT just has (TO-GO-INTO $B).

Finally, if $A is something else, then the ROBOT has (TO-HOLD

$A), then (TO-GO-INTO $B), and then (PUT-DOWN $A). An abstract

operator, like (INROOM SA $B), can be refined into more detailed

operators by simple condition matching. Detailed examples and

applications of this approach can be found in [1,2].

3. A MULTIAGENT PLANNING SYSTEM

In a multiagent environment, the resource sharing and action

coordination must be managed carefully. This is critical to the

success of an integrated system which involves multiple

agents[3]. In our approach, three features have been proposed.
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They are meta-level planning, agent-oriented dynamic

assignment, and breakable and unbreakable action sequences.

task

- Meta-level Plannin_: The purpose is to transform an

original goal (problem) statement into a plan outline that is

easier to pursue. The transformation includes grouping and

ordering original goal components, adding new goal elements, and

posting constraints. A typical example is shown in Figure 3. In

the first step, the system groups subgoals according to resource.

In the second step, it uses domain knowledge to determine the

subgoal pursuing sequence in each group.

ROBOT1

N
ROBOT2

dn GOAL STATEMENT:

((ON B C) (ON A B)

(ON D E) (ON C TABLE)

(ON m F) (ON F TABLE))

Figure 3 A typical multiagent planning problem.

STEP1: Parallel Groups of Subgoals

(= ((ON B C) (ON A B) (ON C TABLE))

((ON D E) (ON E F) (ON F TABLE)))

STEP2: Ordered Subgoals and Groups

(= ((ON C TABLE) (ON B C) (ON A B))

((ON F TABLE) (ON E F) (ON D E)))

The equal sign ("=") of STEP1 shows that there are two

parallel groups of subgoals, which can be pursued by different

agents. The result of STEP2 shows the sequence of pursuing

subgoals within a group. For example, the sequence of stacking

the first block pile is (ON C TABLE), (ON B C), (ON A B).

- Agent-oriented dynamic task assignment: This is to find

out what an agent can do at difTerent times. The planner always

tries to assign one or a team of free agents to be in charge of

one group of related subgoals. The assignment is determined by

the features and the status of agents, the requirements of the

task, and the constraints posted during the meta-level planning.

Actions of each agent are then generated accordingly. Normally,

an agent works for its own subgoal groups. However, exceptional

condition is allowed for an agent to do unanticipated tasks.
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- Breakable and unbreakable action sequences: The idea is to

distinguish the unbreakable actions that must be executed by the

same agent from those breakable actions that can be executed by

different agents. This provides (a) cooperative tasks between

agents can be identified without difficulty, (b) agent utility

can be improved, and most importantly, (c) cumbersome reasoning

for concurrent actions is eliminated. Detailed report will be

published in the near future.

4. EXECUTION ERROR RECOVERY

Normally, a plan must be carried out in a world whose

behavior cannot be predicted exactly, so one must be prepared for

failures during execution[5]. A system that is capable of

handling such failures is presented. One point this system has

made is that it modifies only those parts of a plan that is

absolutely necessary. The planning process involves the

hierarchical expansion of abstract goals (or actions) into

detailed actions. This in essence, generates a tree structure

(called expansion tree or plan tree) with the leaves as the

primitive actions that constitute the final plan. In order to aid

in the error recovery process, a second tree called the decision

tree is used. This is similar to the one proposed in [4]. The

nodes in the decision tree are in one-to-one correspondence with

the decisions made during the construction of that plan. Each

node in this tree has a two way pointer from it to the nodes in

the plan tree, which was created as a direct consequence of its

decisions. The error recovery process consists of error

identification, classification, and recovery.

4.1 ERROR IDENTIFICATION

Two methods have been used to identify errors in the

execution monitoring. They are condition-oriented and

oriented approaches.

plan

object

CONDITION-ORIENTED APPROACH

Since the problem is to identify errors, one must look for

violations of conditions that need to be true at different parts

of a plan. Several conditions are considered, i. Preconditions.

They are predicates that must be true before an action can be

executed. 2. Expansion conditions. These are the status of world

on which the expansion of a node depends. 3. Decision Conditions.

These are the decisions made during the planning process and are

based on a predefined heuristic function.

With these condition classifications, the identification of

errors can be accomplished by comparing the current world state

to the conditions recorded in the decision tree.

OBJECT-ORIENTED APPROACH

All the objects involved in the domain can be classified as
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critical or non-critical. Normally, a non-critical object is

either an environmental object on which none or limited actions

can be performed, or an agent that can perform actions; a

critical object is one on which actions can be performed. If an

error involves a non-critical object, only local readjustment

needs to be made. If the error involves a critical objects, but

the predicate involved does not fall into the critical category

(door locked is a critical predicate), then local readjustment is

needed but changes need to be propagated. This is similar to the

violation of precondition case. However, if the predicate

involved is critical, as the locked door, then a major replanning

is needed.

4.2 ERROR CLASSIFICATION AND RECOVERY

Before an error can be cleared from the "world", the system

has to recognize the type of the error so that an appropriate

modification can be taken. Four error categories are used in our

system.

1. Non-critical error: The modification consists of going one

level higher in the plan hierarchy and adding a subplan when

an assumed condition has failed, or removing a subplan when

the goal was already achieved. This will not affect the rest

of the plan in any way. Most expansion condition violations

fall under this category.

2. Major error, but not critical: It is handled just like

category i. But the rest of the plan might be affected. So

any changes should be propagated along. Precondition and

some expansion condition violations belong to this category.

3. Critical error: This requires the abandoning and the

replanning of certain subplans. Any changes should be

propagated. Decision condition violations fall under this

category.

4. Unrecoverable error: No modification takes place and the

execution is aborted. A typical example in the blocks world

is the malfunction of the robot arm, which will prevent any

further actions. Human operators must be informed to resolve

the error.
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ABSTRACT

The computer systems that will be resident on the space

station will necessarily be large, complex configurations of

software and/or hardware which must function in concert to

maintain the operations of the mission. However, much of the

complexity should be transparent to the user of those systems,
allowing the user to concentrate as much as possible on the

purpose of his/her interaction with the computer, rather than

unnecessary detail.

This paper addresses some important topics in the

development of good, intelligent, usable man/machine

interfaces for the space station. These computer interfaces

should adhere strictly to three concepts or doctrines:

generality, simplicity, and elegance (just as the programming

language code below these interfaces should follow).

Generality refers to the commonality of usage and the

similarity of form and function that should predominate all

the interfaces, so that the user is provided with computer

working environments that appear and perform in much the same

way. Simplicity is obviously desirable, but not a concept to

be taken lightly. It is very important that the interfaces

simplify operations wherever possible (and desirable), and

make intelligent inferences about the intent of the user to

save time and unnecessary attention to detail. Finally, the

elegance of the interfaces should be of great concern. The
interfaces should be as concise as possible, exhibiting the

"principle of least astonishment".

The author will also discuss the motivation for natural

language interfaces and their use and value on the space station,
both now and in the future.

AI provides an extremely powerful tool with which to think

about and develop software applications to run on the space

station. But, without well-thought-out, intelligent, truly

usable man/machine interfaces to harness this asset, much of this

power will be lost.
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INTRODUCTION: LEVELS OF COMMUNICATION AMONG HUMANS AND COMPUTERS

Communication is an interesting subject. Whether we

communicate with other humans, machines, or some other entity, we

do so to achieve some end. With computers, we attempt to get them

to do things for us, (usually) saving time and effort on our

part. It only makes sense, then, that getting them to do

something should be made to be as effortless and logical as

possible. How should we design them in order to maximize ease of

use? Should we make them like us?

Figure 1

communication

humans).

shows a comparison between human levels of

and machine levels of communication (as used by

USERINIER_A(E5
I_OILTON HIGHLEVEL
LRNSuAGEra

HIGI4 LEVELLAN_AGE(;

A_EMIILY LANGUAGE

MACHIdE LI_NGUA&_.
HflRD-'WIRIIIG

MACWINE LEVELS

O1: CoMMuNICATION

N_'TURAL L_NGuAGT:5 (E)4GLISH)

SYMBOLIC COMMuNiCRTIOt4

|

HUMAN LEVELS OF

CoMMuNICATIOlq

Fig. i. Comparison of human and machine communication levels

At the bottom of machine communication we have hard-wiring,

or direct communication with the physical parts making up the

computer. This was done with the ENIAC computer in the late

1940's. The important thing to realize here is that there is no

level of abstraction of input, and therefore no user interface,

between the human and machine at this level: the human operator

is responsible for explicitly determining the actual flow of

electricity through the machine. This may seem rather silly

today, but it was at one time the price one had to pay for

"automated" computing.

Machine language soon followed hard-wiring and abstracted

most of the physical aspects of programming a computer, thereby

becoming the first user interface. Then came assembly language,

which gave mnemonic names to machine language instructions and

provided a slightly more forgiving format for writing programs.

High-level languages such as FORTRAN and LISP appeared on the

scene next, making programming a much simpler and less tedious

task and allowing programmers to be more productive and to write

programs that were less machine dependent than those in the past.
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Much of the software written today makes use of the more

friendly and intuitive input methods that have been developed for
today's computers (the mouse, user menus, icons, multiple windows

on the screen, etc.). This software often reaches a level of

communication that humans use in their everyday life, a level the

author calls "human symbolic communication". Programs are

beginning to interact with the user in the same way that a human

interacts with and responds to symbolic stimuli in the real world

(traffic lights, road signs, a telephone ringing), making the

programs easier to learn and use.

Finally, interfaces which communicate with the user in plain

English are currently under a great deal of study and

development. Some progress has been made, but many large,

difficult problems still remain. The importance and relevance of

natural language interfaces to the space station will be

discussed later in this paper.

ESSENTIAL ELEMENTS OF _ USER INTERFACE

Regardless of the type of interface (be it graphical,

natural language, or some other), three principles (in the

author's view) should predominate its form and function:

generality, simplicity, and elegance [2].

What was the author's motivation behind concentrating on
these three ideals? It stems from the fact that these ideals are

(usually) the three main goals to strive for when writing

computer programs. A programmer's ultimate objective should be

to write programs that are easy to understand, easy to modify,

and easy to use. Since these principles are also what a good

user interface should embody, the same philosophies should apply.

The principle of "generality" might better be termed the

principle of "non-specificity". All the user interfaces on the

space station (or as many as is feasible) should look, be used,

and perform in much the same way, even though they might perform
vastly different tasks. These interfaces should each be as non-

specific as possible, so that features, commands, and utilities

resident in one interface will most likely appear in all the

interfaces. This cannot always be the case, of course; some

features and commands in one interface may not even make sense in

another context. If possible, the similarity of features and

commands should extend both functionally and graphically across

interfaces; in other words, not only should features common to

more than one interface perform the same way, they should even
appear in the same form on the screen. The main idea behind

generality, of course, is that once a user becomes familiar with

one interface, he/she would be able to learn to use other

interfaces in much less time and with considerably less effort.

Incorporating simplicity into a user interface may seem
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rather an obvious objective, but a fine line lies between keeping

things simple and lessening the functional power of the

interface. Einstein may have said it best: "Everyhing should be
made as simple as possible, but not simpler" [1]. At any rate, a

good rule to follow might be that wherever unnecessary detail can

be suppressed, it should be, but not at the functional expense of

the user. A simple example involves the user input of several

parameters for some computing task (a statistical program, say).
If the user needs to run the program more than once, he/she

definitely should have the program option of supplying the same

parameters as on the first execution. Not having this option

would violate the concept of simplicity; either the user would be

subjected to unnecessary detail (i.e. the program forces the user

to input all the parameters again), or the user would lose

functional power (the program only allows the same values to be

used again on subsequent executions).

Implementing elegance into an interface is a highly

subjective task. Elegance is really a combination of good taste

and common sense, and although it may mean different things to

different programmers, a few guidelines do exist.

Probably the main practice that should be followed is the

adherence to the "principle of least astonishment". For those

unfamiliar with this principle, it states that the programmer
should devote considerable attention to the naming of commands,

features, program options, etc. in order to make as obvious as

possible what operation or concept is meant by that name. Put

simply, "say what you mean". The idea is that the user should be

"least astonished" at what the command, feature, or program

option implies. Although this is stated tongue-in-cheek, anyone

who has worked with software in which the keystroke sequence
"CTRL-J CTRL-M ESCAPE R47" was needed to save a file, rather

than, say, "CTRL-S", can appreciate its importance.

WHAT SHOULD USER _NTERFAC_8 ON THE SPACE STATION BELIKE7

Are these graphical, symbolic user interfaces discussed

earlier the way to approach user interfaces on the space station?

Can we develop even higher level natural language interfaces

which can communicate with us in English and truly understand our

instructions and intentions? Assuming we can, when and under

what conditions should we develop them? To answer these

questions, we need to identify the motivations for both types of

interfaces and the advantages and disadvantages of each.

With graphic-oriented interfaces, speed of use and

conciseness of expression are definite advantages over natural

language interfaces. Users can accomplish tasks much faster

using input devices like the mouse, menus, windows, and other

similar features. Tasks that would have to be specified in

sentence form in a natural language interface could be effected
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with a single mouse click or some keystroke.

Natural language interfaces, however, are not without their

advantages. With graphic-oriented interfaces, it is sometimes

very difficult or impossible to perform some task that was

unforeseen at the time of the building of that interface. Given

a powerful enough natural language interface, the user is given

the power of completeness of expression: he/she can specify any

task needed to be performed through English text (again, assuming

that such an interface is implementable). Another argument for

natural language interfaces is that there is virtually nothing to

learn about the interface for the user (assuming he/she knows
English).

Considering the above,

following conclusions:

it seems logical to make the

1) Both graphic-oriented and natural language interfaces

should reside on the space station (assuming powerful

enough natural language interfaces can be developed).

2) Graphic-oriented interfaces should be used in conjunction
with tasks that are well understood and bounded in terms

of previously foreseen needs and capabilities.

3) Tasks characterized by complexity and possible unknown

but essential requirements should have both graphic-

oriented and natural language interfaces (again assuming
their existence). The graphic-oriented interface would

be the interface normally used, with the natural language
interface used for any appropriate situation.

4) As the space station program develops further, more

natural language extensions to the existing graphic-
oriented interfaces should be developed to accomodate the

greater variety of people that will be participating in
the program.

Without a doubt, the space station will contain an amazing
amount of computational power, and harnessing that power and

making it usable should be a huge consideration. The complexity

of the entire operation and the fact that a large variety of
people must work together in the same environment should demand a

great amount of forethought about the man/machine interface.
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ABSTRACT

Because expert systems deal with a new set of problems

presenting unique interface requirements, special issues requiring

special attention are presented to user interface designers. The

prime issues addressed in this paper are i) External Knowledge

Representation: how knowledge is represented across the user

interface, 2) Modes of User-System Interdependence: advisory,

cooperative, and autonomous, and 3) Management of Uncertainty:

deciding what actions to take or recommend based on incomplete

evidence.

INTRODUCTION

The user interface is critical to the effectiveness of expert

systems. Although its importance in securing user acceptance is

well known [3], the issue goes beyond concern for acceptance. The

interface affects overall system performance. This is because an

expert system's ability to solve real problems depends on the

accuracy, not only of its knowledge base, but of the factual

context established during interaction.

Because many expert system development efforts are begun as

feasibility studies, the user interface is often neglected [5]. But

if the system is to be integrated into the workplace, the interface

is essential to its success. And to construct a finished product, a

significant portion of the development effort must go into the

interface. Bobrow, Mittal, and Stefik [2] indicate it is not

unusual for the interface to account for one-third to one-half of

the code comprising an expert system.

Advanced technology in support of the user interface is

plentiful. 'High bandwidth' techniques such as windows, icons, and

direct manipulation have come to typify the state of the art user

interface. Bringing these techniques to bear on particular

applications, however, is not easy [i]. Advanced interface

techniques are no guarantee of a usable system.

Use of techniques must be guided by higher level concepts,

such as intuitiveness, credibility, and locus of interaction

control. Techniques focus on the interface mechanisms; concepts

provide the criteria for selecting and melding them into a

coherent, usable system. This paper attempts to identify a set of
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general characteristics of expert system use interfaces which set

them apart from the interfaces of conventional applications.

That intelligent systems in general differ functionally from

conventional systems may be seen as a continuation of a trend. It

has been observed that the tendency towards increased automation

within society has caused a shift in the human's role from operator

tasks involving perceptual and motor activities to cognitive tasks

emphasizing monitoring and evaluation activities [4]. As systems

become more intelligent, this trend is taken a step further.

Expert systems undertake to perform cognitive activities previously

reserved for humans, and they do so in domains previously beyond

the purview of automation. This causes the burden of decision

making responsibility to shift from the user to the system. That

people would look to machines for the kind of support offered by

expert systems is in itself a change in both the user's role and

the system's role.

EXPERT SYSTEMS AND THE USER INTERFACE

Several aspects of expert systems are significant in levying

unique requirements on the user interface, including external

knowledge representation, modes of user-system interdependence, and

management of uncertainty. These characteristics and their

corresponding user interface concepts are summarized in Figure 1
and are discussed in detail below.

Internal

Knowledge

Representation

Roles

Frames

Fuzzy Sets

Semantic Nat

External Knowledge

Representation

j--no,o.Notation

Graphics

Reasoning

Explanation

Questioning

Mode of Uesr-Svalem Management of

Interdependence Uncertainty
Advisory _ Persuasiveness

Cooperative Conflict

Autonomous Resolution

Figure i: Characteristics of Expert System User Interface

External Knowledge Representation

In designing an expert system, it is helpful to distinguish

internal and external representation of knowledge. Internal

knowledge representation pertains to how facts, theories, and

beliefs are mapped for the purpose of internal manipulation (e.g.,

frames, objects, rules, and fuzzy sets). External representation

refers to how knowledge is represented across the user interface.

It is the terminology, rhetoric, notations, depictions, and styles

of interaction associated with the problem domain.
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External knowledge representation is important in making the

expert system intuitive and credible. Intuitive software minimizes

the learning required to use the system by building on the user's

previous knowledge and expectations [8]. Because interaction with

an expert system tends to be a knowledge intensive activity, using

the system demands more than familiarity with basic operations such

as keyboard commands, menu selections, function keys, etc. For an

expert system to be intuitive, it must exploit the user's

expectations as to how ideas are organized and expressed within the

system's problem domain.

External knowledge representation can be used to support

intuitiveness and credibility in several ways: i) terminology,

notation, and graphics should be modeled on the target domain; 2)

reasoning should be represented in human terms rather than machine

terms; 3) explanations should be explanatory, rather than a

traceback of activated rules; 4) questioning should be progressive

rather than arbitrary. Also, because interaction errors may be

cognitive misunderstandings rather than syntactical typos, they may

not be readily detectable, and the user, rather than the system,

may be better positioned to notice them. The system may support

recovery from such errors by permitting the user to alter the

findings of the system by subtly changing the context.

Mode of User-System Interdependence

The mode of user-system interdependence influences the amount

and complexity of information exchanged between the user and the

system. It also determines the locus of decision-making

responsibility, and along with this, the locus of interaction

control. There are three modes of interdependency: advisory,

cooperative, and autonomous:

i) Advisory expert systems interact with a user who has no

expertise in the system domain. While these systems may employ a

high level of experise internally, their interactions must be

gauged to the user's level. This may require the system to resort

to incomplete analogies, over-simplifications, and loosely defined

terminology. The system has prime responsibility for gathering

information needed for reliable results.

2) Cooperative expert systems support experts in solving

problems in their area of expertise [6]. The system may be

subordinate to the user, so that the user is in control of

interaction as well as decision making [7].

3) Autonomous expert systems are capable of selecting and

executing processes without user intervention. The user functions

not as a source of facts to be added to the context, but instead as

an evaluator, monitor, and manager [4].
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Uncertainty Management

Some research indicates that use of numerical probabilities

in expressing uncertainty is ineffective because users (as well as

experts and knowledge engineers) do not easily understand them [5].

But the problem goes beyond this. Uncertainty must be managed in

terms of how persuasive the system is in presenting its

conclusions. From the user interface perspective, the issue is not

so much one of determining what conclusions can be inferred from

the factual context, but of determining what advice to give or what

actions to take on the basis of conclusions reached. Consider the

following:

i)

2)

3)

There is a 75% chance of rain today

It will probably rain today

Take an umbrella!

These statements could come from a hypothetical weather

expert. The first two statements accomplish essentially the same

thing: they leave it up to the user to decide how seriously to take

the threat of rain. They simply address the question of whether it

will rain today; they do not, unlike the third statement, presume

to tell the user what to do. This may be acceptable as long as the

issue is one of relatively trivial importance. Suppose the example

instead involved a life-threatening disease but the probability

were only 10% instead of 75%. The odds are much lower, but the

stakes much higher. It might be unsatisfactory to simply tell the

user the odds in this case. The interface must tread the narrow

line between compelling the user to action and causing undue alarm.

Another aspect of uncertainty management is conflict

resolution. Depending on the mode of user-system interdependency,

presenting multiple conflicting conclusions for user consideration

may or may not be acceptable. With cooperative systems, the user

accepts final responsibility for resolving conflict. With advisory

systems, however, the user may be unequipped to choose among

conflicting alternatives. Advisory expert systems that provide

users with a list of possibilities in lieu of definitive results

may succeed in reducing the developer's liability, but the

effectiveness of the system is compromised.

CONCLUSION

The ability of an expert system to solve real problems

depends significantly on the accuracy, not only of the knowledge

base, but of the factual context as well. The context cannot be

established accurately if the user fails to consult the system as

intended, or if the system fails to support the user in conveying

the appropriate information. For expert systems to provide this

support, careful attention to the external knowledge domain, the

mode of user-system interdependency, and the management of

uncertainty is required.
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Because of the importance of the user interface, designing

effective expert systems requires developers to do more than simply

deal with the knowledge comprising the problem domain. For

effective external knowledge representation, it is necessary to

consider the way experts and users view the domain, and to

accomodate these perspectives in the user interface. Selecting the

proper mode of user-system interdependence requires that the

developer examine the demands the system makes of the user, the

demands the user makes of the system, and how these demands may be

met. With respect to uncertainty management, it is necessary to

fully grasp the implications of any conclusions reached in terms of

their intended effect on the user.
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Abstract. Applications of linguistic principles to potential problems
of human and machine communication in Space settings are discussed.
Variations in language among speakers of different backgrounds, and
change in language forms resulting from new experiences or reduced
contact with other groups need to be considered in the design of
intelligent machine systems.

The languages that people and machines will use in near-Space settings will
be about the same as the ones that they use on Earth, at least in the short run.

These languages, and their users, will operate according to exactly the same
principles of linguistic structure and change, whatever the setting.

So far as language use by humans interacting with other humans, for the
most part we do not have to worry about it for missions in the near future,
whether the humans are working in Space or are members of ground organizations
which interact with orbital or planetary locales. People are such capable users of
language, and the kind of language we have as a species is so functional, that it
need not concern us so much as, say, the reliability of energy transduction and
distribution (which is currently seen as critical and somewhat problematic) or the

psychological and social effects on Space residents of isolation, restricted quarters,
and scheduling pressures (which still do not appear to concern the U.S. space effort
as much as they should).

Even so, our complex and in many ways delicately tuned language faculty is
a very important human sub-system, so to speak. For this reason alone it may
bear some examination as we make plans for Space residence. Other more concrete

reasons include the following:
* Several human languages will be spoken in near-Space, in some cases in

the same locale. Even when the speakers are bilingual, problems can arise when

assumptions differ, owing to differences in the native language cultures.
• Within the same basic language, different occupational or regional dialects

may be spoken, allowing not just misunderstandings of terminology or nuance,
but also invoking potentially troublesome group identity conflicts.

- Errors and misinterpretations occur occasionally because of economy of
expression and the partial, general nature of reference in human language.

• Yet other errors of communication, either between people, or in data entry
or video-screen perception, seem to occur because of lapses of attention or other
=low-level" processing problems.

When it comes to humans interacting in information-rich ways with
machines, or even sufficiently advanced machines interacting with other machines,

linguistic issues are much more problematic. Since most foreseeable Space habitats
will be heavily mechanized, and may be fairly heavily automated, characteristics
of human language, and indeed of languages suitable to machine interchange, should
concern the designers of complex devices and computer-based information systems.
This is true whether these devices are =intelligent" in the usual senses of reasoning

logically or heuristically, using analogies, profiting from experience, and so on, or
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just are sensitive to situations and interactions.

Communication using some subset of human language has been of concern to

computer system designers, perhaps especially during this decade. Diagrammatic

and other graphic display of information is more frequently used, also, as machine

capabilities increase, and as computer professionals become more concerned for
human interfacing (compare, for example, computer displays in the first SpaceLabs

with suggestions for the next U. S. space station). As time goes on, we may expect:
• more actual language anal_i$, both of human input, and in generating

output from computers, rather than just recognition and delivery of set phrases
with slotsfor variable information,

• developments in graphic and pictorial information exchange,
• confrontation and exploration of issues of semantic analysis that is rich

enough and flexible enough to mimic human understandings, impacting the

structure, for example, of content-linked databases or knowledge bases,
• more explicitappreciation of 'pragmatic" and other socially relevant levels

or aspects of language usage.

Advances have been made in robotic devices. But we have hardly explored

either their

• social capabilities [4] [8] or symbolic conventions for the informational

exchanges that should occur between humans and devices, or among autonomous

action devices [7].

Though it was suggested above that "space languages" will not be much

different from ordinary Earth languages, really distinctive communication

conventions might either be designed or evolve.

• Signaling conventions might evolve or be designed for special situations in
extraterrestrial work. For example, gestural or iconic signs useful for work

outside of spacecraft seem to exist already and should undergo development.
Location markers, whether visual or in some other medium, may be

conventionalized for autonomous devices and space craft.

• It is possible that certain conventions might be useful for interchanges

among humans that speak different Earth languages.
• If remote sites are inhabited by people, they will almost certainly diverge

somewhat in language terminology and possibly in language form as time goes by,

just as languages on Earth change.

• Since the beginning of near-Space exploration by people, distinctivejargon

has developed (some of itwidely known) among Space workers.

The reality of language change will inevitably concern persons who design or

work with computing devices where knowledge is stored and communicated via

ordinary language. At the very least, new terminology and descriptions of new

objects must be incorporated into knowledge-rich systems; and their data
structures and interpretation routines must be flexible enough to allow for

variation and approximation.

Language Variation

Linguists say that human language varies synchronically, at a given time,

when we note hundreds of distinct languages and many more dialects; or

diachronic_IIy, over periods of time. References to historical linguisticsinclude [I]

and [9].
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We are familiar with the phenomenon of new terms coming into common
use, and the dropping out of others. A number of processes can be involved. A

term might be borrowed from another language (Ud_tente"), or made up from

existing parts ("television"). Metonymy, or referring to something by the name of
something closely associated, is another ("a Bordeaux" for a wine made in that

region, or "a Winchester" for a kind of disk drive or rifle). Other kinds of

variation include shifts in meaning, where a term comes to have a related or even

an opposite sense; shifts in syntax, for example, in the present instability of

adverbial suffixes in English; change in performance style, and so on.

These changes take place against a background of great concurrent stability
in a language, which must be predictable for communication. Nevertheless, and

sometimes to the dismay of academics and newspaper columnists, language changes

at all levels. Some changes are certainly prompted by situational novelty, or

contact with others who spear differently; others seem almost intrinsic to language

as a complex system. For example, some tendency to simplification of expression,

at least for matters of frequent usage, may relate to a basic impulse of cognitive
simplification. Exact kinds of change are difficultto predict. However, others

follow precedent or cultural custom. For example, both English and Japanese have
borrowed technical terms from other languages, though in somewhat different

ways. Chinese languages have more frequently constructed new terms by
metaphorical extensions of native morphemes.

The dynamic nature of language, together with the fact that Space workers

will be confronting situations that Earth planners might not be able to envision in
detail, argue for setting up computer-based information systems with some

flexibilityfor growth and modification.

A potential source of tension in future machine knowledge technology in

Space is engendered in the contrast between the changeable nature of human

language, and the predilection of machine systems, and probably 'rational' systems

in general, for fixity of reference. Put another way, any adequate means of

representing Umeaning" for machine systems must also handle _change in
meaning".

Having expanded or modified meanings in machine processing implies that all

concerned parties, whether human or electronic, must have a way of learning
about the extensions or adjustments that are relevant to their activity. This would

apply to occasionally inteTacting kno_Fledse bases within one :ettins, :uoh a._ a

space station or small ground facility;and it would be of major importance to

autonomous mobile devices, which must confront and symbolize novelty frequently,

and which should be able to relay some of this information to companion devices

and to people.

If outposts or settlements of humans come to exist in remote places outside

the Earth, their language usage will certainly diverge. Interestingly, the isolation

may slow the rate of language change, since contact with speakers of variant
languages will be minimal. In these settlements, change would presumably stem

mostly from situational novelty, intrinsic language characteristics, initial pool of

variation among the language users, and chance elements.

References to synchronic language variation, especially sociolinguisticfactors,
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include [2], [5], [10], and [14].

Languages and Groups

We can often identify a person's important group memberships by the way

the person speaks or writes. The basic language used will usually indicate society

of origin. Saying "eh..." in a certain way means the person comes from Canada.

Using certain technical slang and trailing sentences off will identify an aerospace
technical professional. The notion of a "language", which is verbal, can be

extended to the more general concept of a "semiotic", or a system of signs that may
also be nonverbal. Manner of gesturing, for example, can reveal group allegiances.

The relation of language or semiotic systems to groups and their culture

should be of concern in the design of machine intelligence systems in several ways.

First, meanings may be clustered in certain ways in a given group [11], or

assumptions about what is implied by certain statements may vary with the
culture. Additionally, and somewhat more subtly, proprieties and niceties of

presentation will probably also vary from group to group. (This point holds not

just for language groups but for occupational groups, who may for example prefer

different kinds of computer displays or even have feelings about the proper degree
of terseness in communication.)

The conditioning of meanings by culture is by no means understood in detail,
nor is the related matter of the exact effects of language on thought (and vice

versa). Language and group-based differences in assumptions and implications are

certainly real, though not always transparent to the participants. 'Dialectal'
differences in understandings between persons who speak the same language but

have different backgrounds and group-based goals, may be especially hard to

detect. As a partial remedy, perhaps heuristic _expert systems" could be prepared

to advise Space workers who have to deal with persons from other groups.

It should be mentioned that, although comprehensive machine translation

between languages has to be at least as difficult as the analysis of a single human

language, interest in this enterprise has revived over the past decade [15].

Special-Purpose _rmiotics

Short of full-scale language translation by machines (a task that in its

fullness may be better handled by people who spend some time interacting in

another culture), we might settle for machine aids to some of the language

problems that may arise in Space work.

It may be possible to devise small sets of pictorial or acoustic symbols for

important matters, that can be understood with little familiarization by persons
from diverse backgrounds. However, one should note that pictorial conventions to

some extent differ between cultures, as apparently also do "acoustic icons" [6].

Since language processing is in fact very difficult and demanding of computer

and machine storage resources even when fairly well understood, some

computational linguists have aimed to characterize subla2_es for special content

areas. Montgomery and Glover, for example [12], report on a sublanguage for

describing events in space missions.

In planning for the entire machine/human communication arrangements for
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orbital habitats or planetary bases, it is necessary to consider the physical
arrangements as well as functional importance of matters that are communicated
about. Use of sound is very natural on earth, for example, but acoustic signals
must be relayed electronically when humans are in airless environments,

competing with other information that must be delivered and possibly running into
problems of reliability. Informally developed gestural languages are easy for
humans to use, as Roger Brown has shown [5], but may be constrained by
protective clothing in some situations.
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A SBIR (Small Business Innovative Research) contract was

awarded to Analytics to develop a system which uses the faint

magnetic fields generated by the mental processes of the brain as

another route for computer control. The emphasis of this project is

not on the direct control of a computer workstation by reading the

operator's EEG signals, but to control the workstation, or better, to

anticipate the user's needs with the combination of eye data, EEG
data and task or workload data.

Analytics, through a previous SBIR, developed a workstation

which used the operator's eye movements and position to determine

the placement of the cursor on a computer screen. This paper will

first provide a brain wave sensing technology overview and an

introduction into the known rhythms or signals generated by the

brain. This will be followed with a descriptive explanation of OASIS

(Ocular Attention Sensing Interface System) and its intended

integration into the proposed testbed.

Introduction

With the ever growing computer processing speed comes the

growing informational exchange between man and machine. One

interface design aspect deals primarily with the presentation or

selection of information to the user. Another interface design aspect
concentrates on control mechanisms such as the mouse to

manipulate the data available to the user. This project's basic

foundation is that both aspects should be addressed simultaneously.
Most advanced man machine interfaces are directed toward the

cockpit. Complex machines have been developed to simulate the

actual sensations and perceptions experienced by a pilot during

flight. Should advanced interfaces be confined to just the super

cockpit? Could such interfaces benefit the scientist or engineer in

recreating known concepts? Clearly, many scientific problems,

especially those that can be represented in three dimensions, would

benefit by a greater interaction with the computer.
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Electrical/Magnetic Sensing Techniques Overview

.Electroencephalography (EEG) is probably the most familiar

recording technique. EEG's are routinely used by the the medical

community in diagnosing certain sleep or mental disorders. Also, the

EEG along with heart rate and perspiration detection instruments are

used by interrogative polygraphy or colloquially known as "lie

detection". Alpha rhythms were first discovered by Berger (1929). It
is interesting to note that alpha rhythms were discovered with

galvanometers (a magnetic sensing device). It did not become

feasible to record alpha rhythms until the introduction of the

vacuum tube amplifier in the 1940's. A major problem with the early
vacuum tubes were their inherent noise. Today's solid state low-

noise amplifiers are capable of amplifying signals from DC up into the

kilohertz regions with little degradation in the signal. In fact, the

signals amplified by these devices are so clean that the principle

noise source now comes from the neighboring mental activity of the

area under investigation. The signals being detected by the EEG scalp
probes are not only from the activity directly under the probe but

also from other distant sources. EEG readings then are the average
effect of several activity sources.

The signals seen by the EEG are frequencies which range from
between 1 cycle per second to 13 cycles per second. Different

frequency bands represent different states a person is undergoing.

An EEG can easily determine whether a person is at rest,
daydreaming, sleeping, or mentally active.

Probably the most familiar type of EEG signal is the _alpha

rhythm. Its range is generally between 8 to 12 cycles per second. An

alpha rhythm is characteristic of a person in a relaxed state with the

eyes closed but not necessarily sleeping. Its signal is greatest in

amplitude over the posterior portions of the head, and it occurs in

spindles with varying durations. The spindles can be inhibited by

having a person open his eyes. This should indicate that the alpha
rhythm is directly correlated with visual activity. However, after a

person has had his eyes open and slips into a boring situation, it is

possible to have the alpha rhythms reappear even with the subject's
eyes open.

Another interesting EEG reading is the beta rhythm. It is
characteristic of signals of I3 cycles per second and above. Beta

activity is present when an individual has her eyes open and is

mentally active. The signal is present in the anterior quadrants of the
head.
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Theta rhythm_ are characteristic of signals in the frequency

band between 4 and 7 cycles per second. These rhythms are found in

both adults and children under emotional stress. The delta rhythms

are present during sleep and are in the 1 to 3 cycle per second

frequency range. Delta rhythms appear during sleep and characterize

the various sleep levels. Due to their dependence on the sleep state,

they are not useful for this project.

Other signals which can be detected by EEG's are those that are

evoked by certain stimuli. Evoked potentials, then, are time-locked to

specific events. Because of their direct relation to cognitive factors

the N1, P2, and P3 are particularly interesting to this project. The

identifying characteristic for the evoked potential is easily

understood by noting that the preceding letter signifies whether the

signal is negative (N) or positive (P). The number following the letter

indicates how long after the stimulus is given that a response is

expected. Therefore, for N1 the signal is negative and occurs 100
milliseconds after the stimulus.

First discovered by Sutton (1963) is the classic P300 (P_.3_.)

phenomenon. The fact that a component of the auditory related

potential occurred about 300 msec after an unexpected stimulus was

quite exciting This led to more discoveries of other event related

responses. Due to the low frequency characteristic of P3, it is useful

only in slowly developing situations. P3 is evoked by surprising or

unexpected occurrence of both visual and auditory stimuli. However,

for odd visual stimuli, the response is usually more on the order of

400 msec. Its long reaction time can be understood when we imagine

a confrontation with a surprising situation ... we absorb the stimulus

... we analyze the stimulus ... we detect an anomaly ... we react.

The N___L evoked potentials are activated by auditory stimuli.

Magnetic studies by Pellizone (1984) showed that the source of N1 is

in the auditory cortex. It has been demonstrated that the amplitude

of these signals are strongly related to the subject's level of attention.

Unfortunately, the characteristics of this signal vary across
individuals.

Almost anything stated of N1 is also true for P._.2.2,except that far

less is known of P2 than N1. Magnetic studies of this phenomenon

have shown physically separated activity sources within the brain.

With every electrical field there is an associated magnetic field.

Unlike EEG which requires that probes be placed on the scalp,

magnetoencephalogram (MEG) sensors are placed reasonably close to

the scalp but not required to touch. The principle advantage this

offers is the elimination of unwanted "skin" noise which poses a large

problem for EEG recordings. As was indicated earlier, both theoretical
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and experimental EEG studies have shown that different tissues and

bone surrounding the brain attenuate or 'smear' the potentials that

reach the scalp (Geisler and Gerstein, 1961; De Lucchi et al., 1962;

Cooper et al., 1965). However, MEG studies have demonstrated that

concentric layers in the head do not affect the magnetic fields

produced by sources (dipoles). Therefore, MEG is not subject to

'smearing' and can thereby detect sources which occupy small

regions (Grynszpan and Geselowitz, 1973).

Not until the introduction of a Superconducting Quantum

Interference Device (SQUID) could magnetic fields emanating from

the brain be detected. The brain's magnetic field has a strength on

the order of magnitude of 10 -8 Gauss (G) (Reite et al., 1976). In

comparison, the earth's magnetic field has a strength in the order of

0.5 G (Geselowitz, 1979). Strong fields such as the earth's can be

filtered with a gradiometer. For a SQUID to detect magnetic fields in

the order of magnitude of 10 -10 G, the sensors must operate in the

superconducting region. Not until recent breakthroughs in

superconducting materials operating at near room temperatures

(Chen, 1987) was this possible without the use of liquid helium to

achieve the superconducting effect. Supercooling demanded

cryogenics which made any research with SQUID's costly prohibitive.

At the writing of this paper only one commercial company, that the

author is aware of, has been able to fabricate metals for commercial

use. But, as with other electronic technologies, fabricating

superconducting materials for commercial use is expected to soon

become commonplace.

The Eye/Brain/Task Testbed

Computer interfaces, as presently known, are all basically

passive. That is, a computer does not respond to the user without the

user's request. Ideally, an intelligent system would know when

intervention is appropriate. The passive role of "ready servant"

requires that an operator's needs are anticipated. As an analogy to

the ready servant, consider the skilled nurse assisting the surgeon

anticipating the needs of the surgeon before the request is made. As

the computer begins to take on a more active role, the need for the

machine to know the operator's activity and intentions becomes

essential. This phenomenon we experience everyday, but, may never

fully realized. In carrying conversations with other individuals we

unconsciously notice the person's facial expressions, posture, eye

contact, and variations in speech to anticipate what the person's
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intentions are and what he will be saying. Being able to detect these

subtleties using optics and computers would be extremely difficult.

But, it is believed that using instruments such as MEG or EEG which

can estimate a person's mental state, practical steps are being taken

toward knowing a person's intention with a computer. The

Eye/Brain/Task (EBT) project will be a testbed to test these theories.

Before an explanation for how the various electro/megneto

recording techniques will be used on this project, a description of the

Ocular Attention Sensing Interface System (OASIS) should be

provided. OASIS is comprised of a testbed and prototype eye/voice

control system. Basically, a low intensity infrared light is shined onto

a person's eyes. The pupils of the eye reflect the light to an

oculometer which determines eye position. This information is then

fedback to the monitor in the form of a cursor. Therefore, this

prototype allows an operator to move a cursor on the screen by

simply moving the eyes. A voice recognizer also allows the operator

to give verbal commands. By integrating eye data with brain wave

activity, it then becomes possible to determine where a person is

looking in relation to the screen and the person's associated level of

attention within the region.

To fully complete the required components to determine a

person's intention, an indicator of the workload or task is still

required. The full integration of the three components, eye, brain,

and task can best be explained with an example. Imagine a scene as

depicted in figure 1. The object of this task is to direct as many

vehicles as possible through the obstacles to reach the other side.

"Looking" at a vehicle and giving it the verbal command "GO" propels
it forward toward the obstacles. Another vehicle can then be selected

and also given the command to proceed. By this time it probably

becomes necessary to service the first vehicle and direct it to make
either a "LEFT" or "RIGHT" turn. Another vehicle is then selected and

also given the command to proceed forward. What has been

developed here is a rich environment which allows a researcher to

correlate task information with brain activity and visual information.

Audio stimuli can also be interjected.
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Figure 1. Vehicle manuevering task

Conclusion

The Phase II effort will concern itself with the development of

a prototype EBT testbed, and, through applied research and

development, the refinement and optimization of the system. The

principle objective of the proposed Phase II effort is to develop a

laboratory testbed that will provide a unique capability to elicit,

control, record, and analyze the relationship of operator task loading,

operator eye movement, and operator brain wave data in a computer

system environment. Additionally, the testbed will have the

capability to serve as the vehicle for demonstrating computer control

using brain waves at a future time.

Acronyms

1113

EBT

EEG

G

MEG

OASIS

SBIR

SQUID

direct current

Eye/Brain/Task

electroencephalography
Gauss

magnetoencephalography

Ocular Attention Sensing Interface System
Small Business Innovative Research

Superconducting Quantum Interference Device
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ABSTRACT

Integrating the respective functionality and architectural features of knowledge base and
database management systems is a topic of considerable interest. This paper addresses
several aspects of that topic and the associated issues, beginning with a discussion of
the significance of integration and the complexity of the problems associated with
accomplishing such integration. Current approaches to integration are described as well
as their shortcomings. These shortcomings and the need to fuse the capabilities of both
knowledge base and database management systems motivates the investigation of
information processing systems based on new information processing paradigms. One
such paradigm is concept-based processing, i.e., processing based on concepts and
conceptual relations. Reporting on ongoing work, this paper describes our approach to
robust knowledge and database system integration by discussing our progress in the
development of an experimental model for conceptual information processing.

1 Introduction

Knowledge based systems (KBS) and database management systems (DBMS) technologies have
evolved essentially independently of each other. Until very recently, there has been little concern for the
mutual integration of these technologies and their respective systems. But with the advent and evolution
of numerous experimental knowledge based systems in industry, government, and the military, most of
which were developed to establish a proof of concept for automating the performance (or portions thereof)
of specific user functions independently of any operational environment, developers have recognized the
potential for enhancing current information systems with advancing knowledge based system (KBS)
techniques and methods. Since most information systems provide functional support to users through
large, shared, database systems, the insertion of knowledge based systems or the integration of
knowledge based system techniques into these mainstream environments has resulted in considerable
complexities. Despite the current attention to that problem as evidenced by the numerous articles,
projects, and discussions devoted to it, there is a conspicuous absence of any definitive successful
solutions.

Our examination of recent KBS-DBMS integration efforts suggests that fundamentally different
approaches to the fusion of the respective DBMS and KBS capabilities must take place. Although it is
clear that the total convergence of KBS and DBMS technologies is many years away, our research has

* This research is supported by Rome Air Development Center under contract F30602-85-C-0228.
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beendirectedtowardthedevelopmentof concept-based information processing that results in systems
that take on the characteristics of both knowledge and data systems. Our approach to the development of
such systems is from an infological, as well as a computational perspective. With regard to the infological,
we are attempting to define methods for applying and verifying the concepts and conceptual relations in
our system. From a computational perspective, we have been building a library of conceptual and
computational primitives and strategies to realize concept based processing. The theoretical basis of
which has been formally established in Sowa's conceptual graph formalism.

The paper begins with a synopsis of KBS-DBMS integration R&D trends and an overview of the
integration problem. Current integration implementation alternatives are described. Reporting on work in
progress, it concludes by discussing our initial steps towards developing a conceptual information
processor, and its infological basis.

2 Trends In KBS-DBMS Integration

Researchers in artificial intelligence, database management, software engineering, and machine
architecture, as well as numerous other disciplines, have contributed theories, methods, and questions
concerning the development of advanced information systems. A principal concern in many of these
studies is the linkage of knowledge based and database system technologies. Concentrating on the KBS
and DBMS technologies, a diversity of views on KBS-DBMS integration exist. For example, researchers
such as Fox and McDermott have addressed the operational issues of inserting knowledge based
systems into the heterogeneous and data rich computational environments of manufacturing [Fox 86]
Jarke and Vassilou have reported on a variety of KBS-DBMS interconnection possibilities [Jarke 8511
KBS-DBMS application techniques such as the extraction of knowledge from existing clinical databases
have been attempted by Wiederhold and Blum [Wiederhold 86], while Missikoff and Wiederhold have
defined criteria and requirements for an expert database system [Missikofl 86]. Bic and Gilbert have
taken the view that more expressive data modeling formalisms are necessary to enhance database
management systems, see [Bic 86]. Kellogg and many others, including the Japanese, continue their
research in logic-based systems, as a vehicle to progress from data management to knowledge
management, see [Kellogg 86].

There is some evidence to indicate that DBMS technology is being influenced by KBS technology.
Research in DBMS data models is shiftingfrom the development of traditional machine-oriented database
modeling formalisms to more expressive models of the user problem domain. Efforts are being made to
distinguish data from conceptual models applied to that domain. Thus, within DBMS technology there is
the recognition that the work by AI researchers in conceptual modeling, knowledge representation,
inference processing, natural language processing, and graphics-oriented user interfaces is relevant for
expanding DBMS capabilities. Hence, DBMS researchers are attempting to evolve operational
environments which support different user views on the content and organization of their data. In addition,
there is considerable interest in producing "intelliaent" database systems with capabilities for automatic
data acquisition, processing, and dissemination wTthoutuser intervention.

KBS technology can be effectively applied today if the problem to be solved is narrowly-scoped and
its solution by an expert can be captured. Although no common definition or criteria exist for knowledge
based systems, [Harmon 86] delineates knowledge based systems that have been developed for
business and industrial contexts. Despite the fact that these systems are touted as 'operational', the
majority are for very special and limited applications that are not well integrated into the context of larger
information systems. It has become apparent that future KBSs cannot exist as such. That is, they must
exist within the context of much larger systems with significant interfaces to their subsystems,
database management and communications subsystems. A similar conclusion applies to the _S
development tools. In most instances, these capabilities are extremely "low-level"; that is, skilled
rogramming expertise is necessary to build application solutions from the primitive capabilitiesprovided
y the tool set. The languages and t.001sets used to develop these systems, e.g., ART, KEE, OPS5,

exhibit weaknesses reflecting their state of development and motivation to solve small-scale, narrowly-
scoped problems. In addition, they do not support application scaling, meet certain kinds of system
performance requirements, and integrate with conventional computational and database processing.
Work is ongoing to extend the functionality of these existing tools, e.g., the extension of Intellicorp's KEE
to OPUS, and develop next generation tool sets, e.g., Teknowledge's ABE. These extensions are in
response to the near-term need to increase the size and performance of knowledge based systems,
integrate with conventional database and software systems, modularize and reuse components, and
share knowledge bases among several related applications.
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AnothersignificanttrendoverlappingbothKBSandDBMStechnologiesis themovementof KBS
developmenttools, i.e., expertshells,to mainframeenvironments.The motivationis to placeKBS
technologyintheenvironmentoflargescalegeneralpurposecomputers,thus,increasingthepotentialfor
integrationwithmainstreamsoftwareanddatabases.Tothisend,IBMhasintroducedtheExpertSystems
Environment(ESE),anexpertsystemsshellthatrunson IBMmainframesunderMVSandVMoperating
systems.Also,SoftwareA&EhasporteditsKnowledgeEngineeringSystem(KES)expertsystemshellto
IBMmainframes,andothervendorsarefollowing.Whileit _stooearlyto assesstherepercussionsofthis
movement,it is likelythattheycould in the near term have a profound influence on the integration of KBS
capabilities into those environments.

3 The Complexity of the Integration Problem and Approaches

As discussed in [Lazzara 86], the complexity of the KBS-DBMS integration problem stems from
several fundamental differences in the two kinds of systems, including the type of problem each is
intended to solve, their period of development, and basic design/implementation features. In addressing
some of these differences, the subsequent discussion will focus on the reasons for that problem's
complexity, as well as some of the objectives to be achieved in developing a solution to it. Since our
experience is in the study and development of prototype Command Control, Communications, and
Intelligence (C31) knowledge and data systems for the United States Air Force, the remainder of this paper
will address this operational domain.

At this point, the discussion will assume a naive interpretation of the concept of integration.
General characteristics of recent C31 prototype KBS developments will be presented, followed by an
overview of the C31 information systems and their constituent DBMSs. Some alternative approaches to
KBS-DBMS integration which have thus far been proposed and pursued will also be discussed in terms of
their respective merits and viability. The importance of achieving a solution to that problem from a
technological as well as an economic viewpoint will also be addressed.

3.1 Current C31KBS Prototype Developments

Efforts to apply KBS technology to C31 functions in recent years have focused on developing
prototype KBSs to solve a very specific problem. These prototypes are intended primarily to establish
feasibility -- the feasibility of applying KBS technology to perform certain problem solving and decision
making aspects of those intelligence functions. Their design and implementation has focused on using
AI-based software (e.g., the LISP and PROLOG programming languages) and hardware technology (e.g.
LISP machines), rather than on the more conventional hardware and software comprising the C_I
operational computing environments.

For the most part, C31 KBS prototype development has proceeded in the absence of any
considerations for interfacing those systems with or integrating them into the general context of current
CJl-large scale information systems or their constituent DBMSs. Only when a serious effort is made to
compare the two system types, does the diversity in their respective problem solving orientations,
designs, and implementations become evident. Additional factors such as the respective size of their
databases, real-time performance requirements, security, and distributed database and system
environments all contribute to that diversity. Thus, efforts to pursue the KBS-DBMS integration problem
must necessarily account for this diversity, if they are to be successful.

3.2 C31Information Systems and Their Database Management Systems

Today's C31 computing environments and their DBMSs contrast significantly with the prototype
KBSs previously discussed. Many of them consist of conventional large IBM and DEC mainframe
systems. Their operating systems and other system software components, e.g., DBMSs, are also rather
conventional and may not even reflect the latest state-of-the-art. Application software is typically written in
FORTRAN or other common procedural oriented languages. There is little to be found in either hardware
or software which has been imported from KBS technology. Consequently, integrating complete KBSs or
even portions of their structural and functional elements would be a major design and implementation
undertaking in such environments.

The C31 DBMSs in use today have generally been designed and implemented for large scale
system environments. While they may reflect some of the latest DBMS technology, they are not designed
to accommodate KBS database elements, e.g., knowledge and rule base elements. Nor are they
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endowed with facilities to process such elements beyond the typical data management functions of query
processing, updating, and deleting. Thus, DBMSs do not contain a rule processing facility, nor do they
suDport the representation of certain kinds of knowledge and information typical of KBSs. Examples of
U,_AF C31systems and their characteristics are presented in [Lazzara 87].. Just a cursory examination of
these fundamental system differences is sufficient to indicate the potent,al magnitude of any integration
effort.

An additional significant difference between the two systems which pertains to the very foundations
of any integration effort stems from differences in the kinds of problems each was designed to solve. At
this po'nt, it will suffice to pont out that DBMSs are des,gned to facilitate very selective acquisition,
modification, or deletion of discrete data elements stored on mass memory devices. KBSs, on the other
hand, are oriented towards manipulating large quantities of data in main memory and performing
operations on it which extend beyond those of a DBMS. This includes applying rules and rule processing
functions, search and control, as well as other knowledge-base processing functions, to data structures,
many of which are considerably more complex than those maintained in DBMS databases. These
characteristics are at least partly due to the fact that KBSs are not just retrieving data in response to a
user command, but are also emulating human cognitive functions such as comparing, combining,
analyzing, inferring, and decision making.

At one extreme, the KBS-DBMS integration problem might be perceived as a case of trying to mix
apples and oranges, and therefore, is a task with little possibility of success. On the other hand, it might
be perceived as achievable, at least to some degree, particularly where there is a real need to have KBSs
access DBMS databases to support their knowledge processing functions, as well as to infuse some
KBS-type functionality into DBMSs. Some approaches to this integration problem are more viable than
others, however, as the next topic will indicate.

3.3 Current Integration Approaches: Merits and Deficiencies

Although their are variations in the literature, see [Jarke 85 t and [Missikoff 86], four principalapproaches are taken to integrate KBS and DBMS technology: tightly integrate KBS and DBMS
functionality to develop an entirely new type of system - a knowledge-based management system
KBMS); (2) augment an existing KBS with DBMS structural and functional elements; (3) infuse KBS
unctionality into DBMSs; and (4) loosely or tightly couple a distinct KBS to a DBMS.

Thus, the C31 KBS-DBMS integration problem might be approached from any one of these different
ways. In the first approach, one could proceed to develop a KBMS. Such a system would constitute an
"ultimate" solution to KBS-DBMS integration in that it was developed from the very beginning with KBS-
DBMS integration as a goal to be realized in both its design and implementation. But at this point in time,
KBMS development is at its most primitive stages. Although a variety of experimental approaches have
been tried and others proposed, see [Brodie 86], it is not clear what the architectural features and
capabilities of such a system, would be. A KBMS has yet to be built, and the likelihood of this kind of
system being available for C_I environments in the near term is remote at best. Nor is it clear how and in
what way such a system would either replace or augment DBMSs or other systems in those
environments. "Deductive databases" represent a variation of this first approach. Within deductive
database systems data manipulation functions and deductive functions are merged into a common
system. Examples span from the use of Prolog to unify facts and rules with data manipulation functions to
object-oriented approaches to capture the notion of active objects. Both approaches possess benefits, as
well as drawbacks, and thus, are actively being researched.

The second major KBS-DBMS integration approach, augmenting an existing KBS with DBMS
structural and functional elements, is a less ambitious effort, but none-the-less poses formidable
difficulties. For instance, considering C31 KBS prototype systems implemented in complex and powerful
commercially available expert system shells such as ART and KEE, one can easily envision potential
complications. In general, these shells are so specialized in their hardware and software implementations,
that engaging in a major effort to evolve DBMS capabilities within them could be a significant undertaking.
In addition to the inference and data structuring capabilities offered by these shells, the standard functions
of a DBMS would have to developed and made available. Most likely, these functions would be
implemented in a language suitable to data management functions that may be different than that of the
original programming environment. Thus, in preserving the original programming environment and adding
the DBMS functionality, these systems would be challenged by large amounts of code and efficiency
difficulties.

The more viable approach, i.e., approach three above, to KBS-DBMS integration is towards
expanding DBMSs in the direction of more "intelligent" systems. Because of the substantial investment
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alreadymade by the USAF in C31 information system architectures, including recent and ongoing
hardware and software updates, and the incorporation of considerable DBMS technology in those
systems, the KBS-DBMS integration problem solution seems most likely to be towards of "infusing" KBS
functionality into DBMSs. Although conceptually more viable than the other approaches discussedin this
section, the infusion of KBS functionality into DBMSs is not without s.ignifioanttechnological difficulties.
For instance, to provide the functionality of KBSs, e.g., rule process,ng, and explanation, DBMSs will
require the incorporation of conceptual processes, e.g., comparing, abstracting, inferring, and the
conceptual definitions and computational primitives to support these processes.

The fourth approach is currently the most common. Two variations exist: loosely coupling a KBS to
a DBMS and tightly coupling a KBS to a DBMS. In both arrangements, the KBS and DBMS maintain their
identity and their respective functionality. That is, the KBS performs its deductive processes, while the
DBMSperforms data management functions. A major advantage is that existing databases can be used.
In the tightly coupled arrangement, the KBS can request data from the DBMS whenever necessary. When
the KBS requires data, it queries the database. In practice, the KBS arrives at a point where external data
is necessary to satisfy processing goals. In programming terms, the shell attempts to resolve an external
reference, usually by executing a user specified program outside the shell. This program structures the
request to a form acceptable by the DBMS's query processor. The query processor is then called with the
request. The data manager performs the data retrieval and returns the results to the calling program. The
calling program then reformats the results of data retrieved in the form usable by the shell, and the shell
continues its deductive processing. As it is evident, many drawbacks exist in a loosely coupled
arrangement. The deductive component must state the query in a precise way. This query must be
formatted when it is issued and reformatted when data returns. The interface becomes a critical point,
often slowing the deductive component. In addition to efficiency and formatting issues, other issues such
as dealing with null data exist. In a loosely coupled arrangement, the KBS takes a snapshot of the
database prior to performing its deductive processing. That is, selected data is retrieved, structured into
the internal format of the KBS, and then processed. Some of the drawbacks that exist in this approach
are: the data requirements have to be determined prior to KBS deductive activity; data consistency
becomes a problem if the DBMS is updated during the KBS's deductive cycle; and the volume of the data
retrieved could be greater than the storage capacity of the deductive component, thus causing severe
performance problems.

4 Conceptual Information Processing

It is evident from the preceding section that significant complexities exist in the interconnection or
integration of KBS and DBMS technology. Our approach to the integration of KBS and DBMS technology
is a variant of case 1 above; that is, the system pursued in our research takes the notion of KBS-DBMS
integration as a fundamental goal to be realized in both the design and implementation of the system. Our
work has been directed towards defining and implementing a formal systems model for concept-based

rocessing, or in our terminology a conceptual Information processor. Within this research, we have
een proceeding along two dimensions. F,rst, we have been investigating the application of a rigorous

semantic theory for describing the conceptual processor system. Second, we have delineated an
architecture and conceptual and computational primitives for realizing the architecture. These dimensions
will be described after a discussion of concept-based processing.

4.1 An Introduction to Concept-Based Processing

Concept-based processing and derivatives of such processing have been emerging from Sowa's
comprehensive and cohesive theory of knowledge representation and computation. Examples of the
application of this theory can be found in [Sowa 86], and [Fargues 86]. Sowa has formally described a
theory of concept-based processing derived from research in linguistics, psychology, logic, and
philosophy. The basis of which is the notion that people understand the world by building mental models.
Key assumptions underlying Sowa's theory are: (1) concepts are discrete units; (2) combinations of
concepts are not diffuse mixtures, but ordered structures; and (3) only discreet relationships are recorded
in concepts; continuous forms must be recorded by patterns of discreet units. Concept types, conceptual
relations, and percepts are the building blocks used to represent mental models. These are represented
by three types of objects: referents, concept types, and concept relations. A referent denotes individuals,
sets, or values explicitly mentioned in the domain being models. Examples of referents are "Bill",
[Knowledge Systems Concepts, Datalogics], and 2.17. A concept type asserts the existence of something
of a corresponding type, e.g., [PERSON], [BITE], and [APPLE] are concepts. Thus, concept type nodes
can represent ent,ties, attributes, states, and events. A conceptual relation denotes how concepts are
related or connected, e.g., (AGT) and (OBJ) denote the conceptual relations "agent", "object". Concepts
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and their conceptual relations are represented by a structure called a conceptual graph. A simple
example in Sowa's linear notation of the statement "Bill bit an apple"follows:

[PERSON: Bill] <- (AGNT) <- [BITE] -> (OBJ) -> [APPLE]

In this example, concept types are represented as upper-case type labels surrounded by square
brackets, and relabons are represented as upper-case type labels surrounded by parentheses. Bill is the
name of an individual of concept type PERSON. BITE and APPLE are concept types, while (AGNT) and
(OBJ) are relations. (AGNT), denoting agent, links an act, in this example "to bite", to the actor Bill.
Likewise, (OBJ), denoting object, links an actor to an entity which is acted upon, i.e, (OBJ) links BITE to
the APPLE. Thus, the notation represents the statement "Bill bit the apple".

Conceptual graphs and relations are further organized in schemas, where the terminology 'schema'
refers to the organization of these building blocks into larger structures. The conceptual graph notation
makes it fairly easy to describe schemas and to formally make useful distinctions. For instance, a schema
is composed of a coherent set of statements, instead of a series of isolated statements. Likewise, a
schema description for a particular concept contains relations to other concepts rather than to slots and
values or attributes and values. The notion of schema and the utility of schema as active objects, instead
of inert, static descriptions is fundamental to our goal of building a robust functionally integrated
knowledge and data system. The conceptual graph formalism provides the representational
expressiveness and the computational model to define active objects and conceptual definitions that allow
users and applications to interact at a higher level than that of data stored in the database.

4.2 Our R&D Approach and Status

Our current development of an experimental model of a concept-based information processor, i.e.,
robust KBS-DBMS, has been driven from three key motivations. First, we are aware of the current
limitations of both the knowledge base and database system technologies and intend to develop a robust
functionally integrated system. Second, we have defined a partial cognitive model which accounts for the
types of cognitive-like processes, e.g., abstracting, inferring, comparing, desired in the system. Third, we
have been investigating potential infological approaches for performing a rigorous analysis of the concept
types, concept relations, and conceptual processes necessary for a particular application. The first
motivation has been previously described, the second and third are described as follows.

The cognitive model driving our implementation is based on Sowa's process model for DerceDtion
Basically, four functional categories have been described: perception, learning, reasoning, and m_mo_
management. Of these four, our concentration has been placed on the later two. To realize an
experimental functional capability in these two areas, we have defined an architecture composed of a
user interface, reasoning module, information manager executive, and a global knowledge and data base.

Addressing the reasoning module, we have been developing within a Lisp-based environment the
conceptual and computational primitives to realize the definition, representation, and manipulation of
computer-based concepts. Applying a machine-independent object-oriented paradigm, we have
developed data structures for the primary objects of Sowa's theory, and have extended that declarative
framework with the inclusion of a procedural component that can be used to represent dynamic real world
processes. With regard to the computational analog for memory management, we have designed and are
in the process of implementing the information management executive. An architectural scheme has been
developed for uniformly storing and retrieving knowledge and data structures, i.e., objects in both memory
and disk have identical representation. A significant contribution of this storage architecture is that
knowledge structures, as well as data instances, reside on secondary storage and they are accessed and
processed as needed.

The infological techniques being explored are derivative from Sundgren's theory of databases,
Newell's knowledge level description, and Barwise and Perry's situation semantics. The goal is to furnish
the application developer with the logical analysis techniques to define the concepts, conceptual relations,
and referents of the application, as well as provide clearly defined semantics for the application. A larger
issue in concept-based processing is the role and representation of contextual information and its
influence on 'meaning' and 'interpretation'. Although we are not primarily concerned with the interpretation
of natural language, we are confronted with the interpretation of concepts in the larger context of
individuals, events, location, and time. The theory of situations developed by Barwise and Perry furnishes
a basis for these distinctions and the influences of the context on interpretation. The principal idea of their
theory is that the meaning of a sentence is a relation between the sentence and the described situations,
while the interpretation of the sentence is the described situation. Conceptual graphs seem to be
sufficient representations for semantic information, but in addition to computing over conceptual graphs,
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we are striving for a formal basis for capturing the semantics of domain and the respective contextual
influences on interpretation.

5 Summary

In this paper we have characterized some things positively and taken a negative stand with regard
to others; in both cases goal has been to promote a correct understanding of the KBS-DBMS integration
problem which underlies the difficulty in fusing these technologies. Our attempt has been to "cut" through
the plethora of information and research studies that seduces us into failing to recognize the real problem
or to believe that simple solutions exist. As an approach to this largerproblem, we have described a
concept-processing paradigm which we believe will resolve many of the difficulties associated with KBS-
DBMS integration. Likewise, we have overviewed the status of our ongoing work in the development of
such a system, and also, have delineated some initial goals and approaches for infological analysis.
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ABSTRACT

One of the recent problems faced by developers of
knowledge based systems is how to best use data already

stored in traditional data bases.. This paper describes
one approach to transforming information stored in
relational data bases into knowledge based representa-
tions and back again. This system, called Foundation,
allows knowledge bases to take advantage of vast
amounts of pre-existing data. A benefit of this
approach is inspection, and even population, of data
bases through an intelligent knowledge-based front-end.

!. INTRODUCTION

A workstation tool (Foundation) has been developed to assist
in the complex task of analyzing information contained in

engineering data bases. Foundation users are able to _raphically
display networks of components, query the network for information
about the components, and edit data on components in the network.
Analysis of the system from various perspectives is supported.

Foundation synthesizes initial structural relationships from
the data base data dictionary and is then able to read records
from data base tables. Some tables contain structural informa-

tion, others contain functional information, while still others
contain attributive information for particular applications.
Structural information is used to construct the initial hierarch-

ical model, then functional and attributive information is used
to construct a set of network links between the former data base

key values, which are now objects in the knowledge base.

The initial application for Foundation is a knowledge-based
interface to Boeing's Space Station Engineering Master Data Base,
a system designed for information management in design and
development of the NASA Space Station. There are two major key-
object mappings: one, part-classes from diverse discipline models

describing the many individual components used in the design, and
two, part-instances used in describing how all the different
parts fit together into an engineering working model. This paper
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presents current status and goals of the project,
lessons learned and further application potential.

focusing on

2. THE WORKSTATION

This development joins two distinct environments, relational
data base and knowledge base. The initial work has been in data
base environments with well-defined structure and behavioral ele-

ments such as those found in engineering design. These elements
encompass both static engineering discipline models, (i.e.,
invariant component structure), and dynamic system models, (i.e.,
component instance behavior). Translation from the data base to
knowledge base system is accomplished through conventional data
base access methods driven by the complex qualitative model that

is the "foundation" of the knowledge base[3 1 . The qualitative
model used within the knowledge base is the ma3or topic of this
section.

2.1. The Data Base

To fully understand the knowledge base model it is necessary

to inspect the structure of the typical engineering data base.
At high levels the data base is partitloned into tables
representing structural or descriptive information, and func-
tional or behavior information. Structural information

represents the generic structures of the data base objects, i.e.
parts in the data base, as well as the connections between gen-
eric parts, such as subcomponent and interface relations.
Descriptive information includes mass, thermal, and electrical

properties of data base objects. Functional information about
data base objects describes the behavior of system components,
such as how thermal properties are used to represent conditional
behavior or how separate instances of a component function differ
within a system.

2.2. The Knowledqe Base

In order for Foundation to be used with various data base

systems, all access to the data base information is through a

query language (SQL) rather than by accessing tables images
directly. This approach also helps to ensure data base integrlty
through the use of the native data base system access and lock
protocols.

Structural information is extracted from the data base to

define templates of attributes common to all components in a sys-
tem, as well as component types from which specific component
instances are created. Other tables in the data base contain

behavioral data about component types. These data are read from
the relational data base into the knowledge base in rule form.
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The process of translating from the data base to the
knowledge base consists of several steps:

i. Read data dictionaries for various tables describing the
data base architecture as well as the format and type of

data (structural, descriptive, or behavioral) contained
within.

• Establish bounds, (i.e., levels of detail, proper views or

perspectives, etc.) on information to ensure that sufficient
data are retrieved from the data base. Performance and

storage issues drive the need for bounding the data.

• Read static structures from appropriate data base tables.
These structures are used as keys to read static attributive

data required for current view or perspective.

• Read static behavioral data. These data are used to

describe the generic behavior of components, but do not vary

as the component is used in specific system settings (such
as the operatlng temperature range for a component).

•
Read attributes to describe the instance behavior of a com-

ponent• The working behavior of a component includes func-
tional descriptions specific to the component and its par-
ticular application in the system. Some of these attributes
within the description serve only to contain values related
to some "working" status, such as current temperature of a
fluid in a pump. Some attributes have default initial
values set upon creation while others have values assigned

during various behavioral inference schemes[l,4].

The architecture of the knowledge model is similar to the

data base, with a strict division of generic component and
instance information. Structural and descriptive data about com-

ponents are combined into frame-like structures. However, real
differences exist in the complex connections drawn between
objects in the instance environment, and in the ability to reason
about instances using generic and specific component rules• The
component system may be viewed as a hierarchical tree of objects,
where each object can be decomposed into its component parts, in
a well-connected network of component instances. Figure 1 gives

examples of description data contained in the knowledge base.

System functionality is implemented in rule bases, figure 2,
where inferences within the knowledge base can be made through

forward and backward chaining of component _roperties or con-
straints[4]. The resulting inference mechanzsm, based on propa-
gation of constraints, is applicable to a wide class of physical
systems exhibiting discrete or continuous behavior, and can be
used with a variety of representations (e.g., quantitative or

qualitative)[5].
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GENERIC DEFINITIONS:

(deftype PUMP-A (generic-type 'PUMP))
(defproperty PUMP-A (pressure (LOW (less-than 0))

(NOMINAL (range 0 50))
(HIGH (greater-than 50)))

(temperature (LOW (less-than i0))
(NOMINAL (range i0 80))
(HIGH (greater-than 80))))

INSTANCE DEFINITIONS:

(defproperty PUMP-A ((PUMP-SWITCH-STATUS 'ON)
(PUMP-STATUS 'WORKING)
(PUMP-PRESSURE-STATUS 'NOMINAL)
(PUMP-TEMPERATURE-STATUS 'NOMINAL)))

FIGURE l: Examples of attribute definitions.

GENERIC RULES:

(defrule PUMP-WORKING
IF [AND [IS-A-PUMP =some-pump]

[INPUT-TO-PUMP =something]
THEN (tell [OUTPUT-FROM-PUMP =something])

INSTANCE RULES:

(defcomponent PUMP 362 'PUMP-A)
(defrule PUMP-SHUTDOWN

(IF [AND [COMPONENT '<PUMP-362>]
[PUMP-SWITCH-STATUS '<PUMP-362> 'ON]
[PUMP-PRESSURE-STATUS '<PUMP-362> 'LOW]
[PUMP-TEMPERATURE-STATUS '<PUMP-362> 'HIGH]]

THEN (tell [PUMP-STATUS '<PUMP-362> 'ABNORMAL])))

FIGURE 2: Examples of rule definitions.

3. CONCLUSIONS AND FUTURE DIRECTIONS

Early work on Foundation shows the feasibility of transform-
ing data from a relational data base into a knowledge based for-
mat. Work of this nature is instrumental in bridging the gap
between traditional data base systems and knowledge based sys-
tems, allowing knowledge based systems to take advantage of
existing information stored in data bases. It also paves the way

for storage of the large amounts of knowledge structures neces-
sary for more advanced reasoning systems.

Althou_h this project focuses on the "well-defined" environ-
ment found in engineering discipllnes, future work will represent
engineerln_ informatio 9 at @reater and deeper levels of detail.
Finer gralned propertles wlll be attributed to smaller entities,
while larger collections or systems of these entities will be
attempted. Reasoning over time will be accomplished with the
coupling of time intervals and properties[5].
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A new problem challenging the artificial intelligence com-

munity is "design knowledge capture," that is, the construction
of systems wzth inherent built-in evolvability toward more
advanced technologies and machine intelligence[2]. Knowledge
within these detailed designs can be physical, conceptual, func-
tional, or structural. Design knowledge includes, for example,
traceability to requirements, standards, and specifications.
Attributes of a part are described, as well as analyses, simula-
tions, and trade studies• Other uses include
validation/verification and operations/maintenance activities•
Success in this evolution process depends on being able to cap-
ture "as-built" design knowledge from the outset• In a design

knowledge environment "knowing why a quantity has a specific
value is at least as important as knowing what the value is. J5]"

io

•

•

•

5e
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ABSTRACT

In the past decade, operations and research

projects that support a major portion of NASA's

overall mission have experienced a dramatic increase

in the volume of generated data and resultant

information that is unparalleled in the agency's

history. The effect of such an increase is that most

of the science and engineering discipliens are

undergoing an information glut, which has occurred,

not only because of the amount, but also because of

the type of data being collected (i.e., spatial data).

This information glut is growing nonlinearly, and

is expected to continue to grow in this fashion for

the foreseeable future. Consequently, it is becoming

physically and intellectually impossible to identify,

select, modify , and access the most suitable

information specifically applicalbe to the various

engineering and research projects of interest. Thus,

the dilemma arises that the amount and complexity of

information has exceeded and will continue to exceed

using present information systems, the ability of all

the scientists and engineers to understand and take

advantage of this information.

Based on the scope, expected growth and dominance

of this problem, it is anticipated that the future

ability of NASA to perform meaningful space and earth

related research will be significantly affected by its

inability to manage and use its collected information

to derive useful knowledge. Consequently, it is

envisioned that dramatically different approaches to

data management will need to be taken if earth and

space related operations and scientific investigations

PRECF.DING PAGE BLANK NOT FII.IV_ED
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are ever to take full advantage of the information and

data being collected and stored.

As a result of this situation, NASA has

initiated the Intelligent Data Management Project to

design and develop Advanced Information Management

Systems (AIMS). The project's primary goal is, using

advanced technologies, to formulate, design, and

develop advanced information systems that are capable

of supporting the agency's future space research and

operational information management needs. The first

effort of the Project was the development of a

prototype Intelligent User Interface (IUI) to an

operational scientific database, using expert systems

and natural language processing technologies. This

paper presents an overview of the IUI formulation and

development effort.
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ABSTRACT

Payload Processing for Space-Station Operations, including

mission manifesting and its effect on KSC Ground Resource

Allocation, represents a class of ill-structured, complex

scheduling problems which are often unsuitable for applying

optimization algorithms. The situation has inspired the

development of AI-based planning aJad scheduling systems

specifically designed for Payload Processing activities. This

paper examines the application of am AI-based system, called

PHITS, to integrated payload scheduling and its effect on Ground

Resource Allocation at KSC.

Unique to the PHITS approach is the process by which
schedule generation occurs. Experiments are represented in terms

of objects which are semantically related based on mission goals.

Unlike conventional scheduling systems, task flows are only

defined for individual objects. Integrated schedules are

generated by evaluating object, attribute, value (OAV) triplets

for experiments considered candidates for flight. OAV triplets

contain user-defined constraints on object interaction. A goal

directed simulation subsystem examines the schedule and performs

conflict resolution as needed to achieve the on-orbit requirement

goal.

INTRODUCTION

Part of Kennedy Space Center's (KSC) responsibility is the

prelaunch preparation and integration of experiments for

transport to Space Station and the deintegration and processing

of returned hardware. As an example, consider an experiment

which operates in a pressurized laboratory module. The

experiment is first received at the launch site where it is

inspected and integrated into a laboratory equipment rack. A

high fidelity simulator then verifies the module-to-rack

interfaces prior to installing the rack in a logistics module.

Finally, the logistics module is installed in the orbiter for

transport to the Space Station. Each payload generates unique

and complex demands which require a large array of resources

including facilities, equipment, materials, personnel skills and

training. Furthermore, the process becomes even more complex

when processing multiple shuttle flights in parallel. As a

result of the relatively fixed level of available resources and
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highly structured set of schedule constraints imposed by the
shuttle launch and landing, planning and scheduling of processing
activities associated with new flights represents a nontrivial

task. Efficient planning and management of this process is a key
element in maximizing the effective use of the Space Station
while minimizing the cost.

The above situation has directed researchers toward AI-based

scheduling systems designed to operate in the domain of

resource-constrained scheduling. This effort has produced
systems such as MAESTRO [2], PLANNET [8], MARS [9], PEGASUS [4]

and others. A commonality among many of these systems is the

methodology used in generating conflict-free schedules. In many
cases, a schedule is generated using traditional CPM routines,

followed by heuristic methods that attempt to produce a conflict

free schedule. More recently, researchers have investigated the

effects of temporal reasoning applied to resource-constrained

scheduling _[I] [ii_ in hopes of automating deductions about time.

The Payload Handling Inventory Tracking System (PHITS),
developed by Harris Corporation [5], deviates from the above

philosophical methodologies in that it provides a modeling
environment that couples scheduling, simulation and AI

technologies in one unique modeling environment. Bruno et al.

[3] share this philosophy and have applied it to the domain of
Flexible Manufacturing Systems (FMS). However, the distinction

between PHITS and Bruno's FMS system is the way schedule

generation and simulation are performed. This paper examines the

application of PHITS to integrated payload scheduling and the

effects this has on Ground Resource Management giving particular

attention to the usability, scheduling and simulation aspects of
PHITS. The reader is referred to Ihrie et al. [6] for an

overview of the technologies used in PHITS.

STORAGE STUDY OBJECTIVES

MDAC-KSC was tasked to identify Space Station payload
storage policy alternatives at KSC. This required a forecast of

storage requirements in relationship to experiment types, sizes
and numbers that flowed through the processing facilities at KSC.

It was determined that a software tool capable of tracking
resources and forecasting their requirements in a very dynamic
environment would greatly assist MDAC-KSC in accomplishing the
objectives of the study. In addition, a "what if" feature for

performing sensitivity analysis on the primary variables defined
in the study would provide the flexibility for examining
competing scenarios. MDAC in cooperation with NASA-KSC agreed to
use the PHITS system for supporting their study efforts.

Having defined the manifest as the primary variable for
determining storage study policies, it was recognized that the
ability to generate manifests was necessary since manifests were

generally unavailable for most flights considered in the study.
PHITS possessed the capability to generate manifests based on
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experiments from the Civil Needs Database and their associated

constraints. Flights from 1994 to 2002 including 127 experiments

were considered. Based on the results of the manifest, PHITS

produced a payload schedule defining the timeline for all tasks
and resources. The schedule was then simulated to determine

storage requirements and resolve any resource conflicts that

occurred. The following sections describe this process.

BUILDING THE STORAGE STUDY MODEL

Developing the Storage Study Model required the user to

define the objects relevant to the study, such as experiments,

log-modules etc. PHITS provides a powerful user interface for

simplifying the process of identifying and defining objects. The

Genealogy Editor was utilized to identify each object as a class

or instance and graphically portray all parent-child

relationships. Figure I illustrates the Genealogy Editor.

Add I;_ Ck_r Ge_loa_, Oe_tt40bj6¢L Dele_ I_)_ _ _ CIm, I_¢ Ob)ect, Sevc

Genealogy

ouse-l: Select th_s frame to bo used I. relatlonuhlp.; Mouse-H; Move frame.; Mou_e-_; Menu.
• 6,.,. other comma,d,,, pr_,,, r.h_ft. ¢_nt_,,I. Con_,_l-';_,ft. Met_-_;h,_t. _ _,,))_r

Figure-l: PHITS Genealogy Editor

Object task flow scripts were then defined for each object.

Task flows were either inherited from a class of Experiment, or

uniquely created for the specific experiment being defined.

Task-based resources and storage types were identified during

this process. OAV requirements were also instantiated at this

time. OAV triplets represent constraints one object imposes on

other objects. In the Storage Study, for example, an experiment

object that affects available shuttle mass is represented by the

following OAV triplet:

((shuttle mass 2345))
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PHITS uses this property list to determine if the experiment is
capable of being attached to the flight. The scheduling
component utilizes OAV triplets for developing the entire task
network for a given mission.

Once all objects were identified and defined in terms of
their task network flows, the Attribute Editor was accessed for

defining object attributes. For example, object HB-S contains an
attribute called "launch-date" with a facet of "is" and a value

of "July lS, 1994." For the Storage Study, each experiment
contained an attribute called "sq-ft" which represented the

square-foot dimensions of the experiment. Furthermore, each
experiment class contained an algebraic expression attribute
utilized to compute storage requirements based on the sq-ft
attribute of each experiment.

PHITS provides a Structure Editor for attaching experiments
to a given flight. Attaching experiments in this manner
guarantees the experiment will be manifested during payload
scheduling. This is a useful feature when a manifest has been

previously set by NASA or when analyzing different manifests.

PAYLOAD SCHEDULING

Payload scheduling in PHITS consists of connecting
individual object definitions into a single integrated payload
flow that satisfies all connector constraints. Figure 2
illustrates the task flow script for individual objects. From
Figure 2 the object shuttle is defined by more than one set of
task flows. Each flow may contain one or more start and end
nodes. End nodes contain information corresponding to a
connecting set of tasks on another object.

w, m
w mm

H'....,,,l_t *_',lJ y I
h.t,d.p .I, ,J
L..mt_n

FIGURE-2: OBJECTS TASK FLOW SCRIPTS

uf,
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The scheduler operates on a user-selected set of missions
and experiments. A mission is considered an object with a launch
date and possibly containing a set of experiments. Additional

experiments are left unattached and may be considered candidates
for flight. For each manifested and unmanifested experiment, the
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scheduler first constructs a complete sta_d-alone task flow by
following connections between object task flows. OAV triplets
are not considered during this forward pass. Figure 5 represents

this process:

.)

FIGURE-3: STAND-ALONE TASK FLOWS

At this point, the scheduler must eliminate duplicate tasks
from experiment flows attached to a single mission, manifest the
unmanifested experiments, replace object classes with specific
objects and assign task dates to meet launch dates. The key
ingredient here is ensuring that all mission constraints are met.
Constraints are represented by the OAV triplets mentioned
previously. At each point in the flow where multiple objects are
integrated, the scheduler attaches as many objects as possible
without violating the OAV constraints. Manifested experiments
are attached to a mission first, followed by unmanifested

experiments wherever possible, based on a user-selected priority.
The final output is a fully integrated task flow for each
mission, such as that shown in Figure 4. Using this approach,
the scheduler guarantees each mission is internally conflict free
and satisfies all object constraints.

A CPM routine is then applied to the overall network to

instantiate the Early-Start, Late-Start, Early-Finish and
Late-Finish dates on the network. The critical path is defined
as the task path where Early-Start is equal to Late-Start and
Early-Finish is equal to Late-Finish.
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FIGURE-4 : TASK NETWORKFLOW

As mentioned above, the scheduler instantiates the

early-start late-finish range for each task. This range dictates

the permissible time interval of each task. If the range is
violated, then the on-orbit requirement date is not guaranteed,

resulting in the possibility of a slipped schedule. One of the
designated tasks of the simulation subsystem is to ensure
schedules are maintained. Figure S illustrates the early-start

late-finish range for a task.

Early-Start o
< Task Duration ,_

Late-Finish

Permissable Task Range

FIGURE-5: EARLY-START/LATE-FINISH RANGE

SIMULATION

Simulation in PHITS represents a complex process of tracking

objects, resolving resource conflicts and dynamically
re-adjusting in order to achieve the on-orbit requirement goal.
An event calendar is utilized as the central control structure
that communicates with other objects by message passing in much
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the same way as KBS [i0] and ROSS [7]. Tasks are examined by the

event calendar to determine if a violation in the early-start

late-finish range is imminent. If a violation is detected, the

task object is given to the Meta-level Resource Manager to

determine if a local resolution is feasible. Local resolution

implies conflict resolution is applied to the task in question
without disrupting the processing of other tasks.

Local resolution is an attempt to quickly resolve resource

conflicts by applying a small set of heuristic information on a

local scale. PHITS utilizes a Pre-processing facility as a

vehicle for performing local resolution. If a task range

violation is detected by the event-calendar or Resource Manager,

then Pre-processing is initiated. Figure 6 represents a

conceptual illustration of a task range violation. Notice the

Late-Start milestone has been exceeded, therefore, local

resolution will attempt to shorten the task duration so that the

task does not violate its Late-Finish range. Pre-processing

applies very simple heuristics such as overtime, increased

resources where applicable, etc. to satisfy the task's range

constraints. If this effort is unsuccessful, then global
resolution is initiated. Global resolution is defined as the

process where resolving a conflict for one task affects another
task's processing. The current version of PHITS contains the

architecture for supporting global resolution, however, a

significant amount of knowledge engineering is needed before full

scale implementation can occur. Although lack of global

resolution did not adversely effect the outcome of the Storage

Study, it was recognized that other candidate studies would

probably require this capability.

Permissable Task Range

FIGURE-6: TASK RANGE VIOLATION

Due to the object-oriented nature of PHITS, storage

requirements were easily generated. Attribute expressions

containing algebraic equations and sq-ft values were evaluated at

simulation time. Storage requirements based on experiment and

storage types were collected. Cumulative storage requirements

were reflected graphically as temporal representations which

proved useful for comparing multiple manifest scenarios. Gantt

charts were utilized for displaying the overall processing

schedule. Figures 7 and 8 illustrate these features.
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Although not utilized during the Storage Study analysis,

PHITS features an animation component which demonstrates a

pictorial view of the simulation process. Object icon attributes

are updated dynamically to represent the discrete changes in the

simulation status. This proves valuable when an analyst is

concerned with tracking specific objects throughout the

simulation, or discovering potential bottlenecks of a process.

FUTURE RESEARCH

Future research efforts for PHITS will focus on the Resource

Manager and global resolution. Temporal relations will be
examined in an effort to better understand and manipulate
conflicts on the global scale. Other directions include porting
the technology from a Symbolics environment to an 80386

environment. Incorporating intelligence features into the

manifesting capability of PHITS also has potential for future

research. Finally, the technology contained in PHITS will be
investigated for modeling other problem domains within the Space
Station Program.

CONCLUSION

PHITS is a prototype modeling tool capable of addressing
many Space Station related concerns. The system's

object-oriented design approach coupled with a powerful user

interface provide the user with capabilities to easily define and

model many applications. PHITS differs from many Al-based

systems in that it couples scheduling and goal-directed

simulation to ensure on-orbit requirement dates are satisfied.
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ABSTRACT

A prototype scheduling system named MAESTRO currently under

development is being used to explore possible approaches to the

spacecraft operations scheduling problem. Results so far

indicate that the appropriate combination of heuristic and other

techniques can provide an acceptable solution to the scheduling

problem over a wide range of operational scenarios and

management approaches. These can include centralized or

distributed instrument or systems control, batch or incremental

scheduling, scheduling loose resource envelopes or exact

profiles, and scheduling with varying degrees of user

intervention. Techniques used within MAESTRO to provide this

flexibility and power include constraint propagation mechanisms,

multiple asynchronous processes, prioritized transaction-based

command management, resource opportunity calculation,

user-alterable selection and placement mechanisms, and

maintenance of multiple schedules and resource profiles. These

techniques and the scheduling complexities requiring them will

be discussed in this paper.

INTRODUCTION

As the complexity and sophistication of spacecraft and the

experiments they carry increase, the cost of operating them

increases as well. It is imperative that these spacecraft be

operated as efficiently as possible. This will require

significant changes in the way spacecraft are managed, including

more sophisticated scheduling techniques. Assumptions made in

the past to simplify the scheduling problem will no longer be

supportable. A system which controls spacecraft must be capable

of evolving to meet demands for more payload intelligence and

autonomy, more real-time user control, more complexity in the

interactions possible between activities aboard one or more

spacecraft, etc. In designing a scheduler for spacecraft

operations a number of as yet unsolved problems arise as a

product of various interactions among experiment and systems

requirements, constraints on ground and spacecraft systems

capabilities, and so on. The degree to which these problems can
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be solved will significantly affect how well

management is carried out in the 1990's and beyond.

spacecraft

Scheduling, as defined in this paper, consists of fixing

the execution times of activities on a timeline, such that all

constraints (e.g. resource requirements, environmental

conditions, etc.) on these activities are met. This can be

contrasted with the definition of planning, in which a set of

operations is ordered such that a desired goal state is reached.

A scheduler assumes the orderings for operations are fixed, and

does not have the knowledge or mechanisms necessary to order

them.

It often happens that a partial or completed schedule will

prove to be in need of revision due to changes in mission

requirements or resource or conditions availabilities. Making

the required changes to a schedule, including unscheduling, is

also part of the scheduling process.

The scheduling problem is extremely difficult for several

reasons. The most critical factor is the computational

complexity involved in developing a schedule. The size of the

search space, the space of possible schedules, is large along
some dimensions and infinite along others. There can be an

infinite number of ways to place a single activity, and a large

number of choices of crew assignments to activities, for

example. Additionally the goal of the scheduling process is

ill-specified - the requirement is to produce a "good" schedule,

one which meets a number of often conflicting requirements.

These requirements can include efficient use of resources, no

time or resource constraint violations, and maximum production

during a specified time period, for example. There exist

many additional factors that make scheduling a difficult

problem, e.g. there are interactions between particular

activity placements and resource usages that make constraint

violations difficult to predict and avoid.

The specific requirements of a scheduler for spacecraft in

the Space Station era have not been defined, and are expected to

evolve as spacecraft and instruments become more complex.

Thus part of the scheduling problem is to create a system which

can schedule within a number of possible operational scenarios
and management approaches. The next sections discuss some of

the solution methods implemented in MAESTRO.

SCHEDULING TECHNIQUES

The approach taken within MAESTRO to scheduling involves a

representation of scheduling objects and operations which

generate schedules based on the relevant information. (An

expanded description is given in [Britt, et al 1986] and

[Geoffroy, et al 1987]). Objects of the scheduler include

models of the activities to be performed, and models of all

relevant constraining resources and conditions. Activities

within MAESTRO are modelled as ordered series of subtasks, each

372



of which requires a set of resources and conditions which does

not vary over the duration of the subtask. The duration of each

subtask, and any delays between them, can vary. There are

several types of constraints which can be considered within

MAESTRO. These include resources such as crew time,

electrical power and pieces of equipment, consumables such as

water and liquid nitrogen, and conditions such as ambient

temperature, vibrational stability and spacecraft attitude. The

scheduling operations within MAESTRO involve repeatedly

executing a selection-placement-update cycle, in which an

activity is chosen, the activity is placed on the schedule, and

resource availability profiles are updated to reflect that

placement.

Selection of an activity to schedule on each cycle is based

on heuristics such as relative constrainedness of activities,

the priority assigned to each, and the success level, defined as

the ratio of performances scheduled to those requested, for

each. These criteria are combined using weightings which

reflect the relative importance of each of these factors.
Selection is thus based on several characteristics of the

activities in relation to the current partial schedule. Two

of these characteristics, priority and level of success, are

calculated in a straightforward manner. Relative

constrainedness is a more involved measure.

Relative constrainedness of activities can loosely be

defined to be the number of performances of each activity that

could be placed given the current partial schedule and resource

availabilities. The system first obtains a rough measure of

placement opportunities. In order to obtain this rough measure

the system maintains knowledge of all possible placement

alternatives for every subtask in each activity considered for

selection, taking into account resource requirements, subtask

temporal specifications, and a number of other factors. This

process, called viable intervals calculation, results in a set

of time windows for each subtask during which all of the

conditions for the operation of that subtask are met. These

windows are pruned to take into account temporal constraints

between subtasks within an activity as well, but the process

achieves only a good approximation to the specification of all

and only those subtask time windows which are possible.

A second process, temporal constraint propagation, based on

a technique developed for scene understanding by Waltz [1975],

further refines the specification of placement opportunities

providing an exact measure of all possible start and end times

for each of the subtasks. This function handles a variety of

constraints on the start and end time points, including minimum

and maximum durations of all subtasks making up an activity,

delays between subtasks, duration of each performance of an

activity, delays between performances of an activity, starting

and/or ending time windows for activities or subtasks imposed by

mission requirements, and the set of ordering relations between

activities enumerated by Allen [1983] such as precedes or

follows. The result of these two processes specifies all and
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only those points on the timeline which are candidate start and

end times for each of an activity's subtasks. These results can

be used to measure constrainedness - how hard it will be to find

a place on the timeline where the activity can be scheduled

meeting all of its constraints.

Once an activity has been selected for scheduling there are

typically a large number of times each subtask could start or
end. This necessitates making use of placement heuristics

appropriate to each activity, determining the placement of the

activity in relation to the overall scheduling time period,

maximizing or minimizing subtask durations, minimizing or

maximizing delays between subtasks or between performances of

the activity, and placing the activity in relation to other

activities already scheduled. In determining exact

placements, these placement heuristics are used in conjunction
with the Waltz function described above to prune possible

placements down to a unique specification of each subtask's

start and end times.

Unscheduling may be required for a number of reasons - e.g.

a new high priority item may need to bump some previously
scheduled activities, or there may be a downward revision in

projected resource availabilities. In these cases, a number of

factors must be considered when deciding which performances of

which activities must be taken off the schedule. Heuristics

for unscheduling when constraints are violated include goodness

of fit between activity resource use and magnitude of resource

overbooking, base priorities of activities, dependencies between

activities, other opportunities to place each activity, the

ratio of performances scheduled to requested for each activity,

interruptibility and restartability of each, and so on. As with
selection for scheduling, these factors are combined with

weightings and compared to determine which performances to

unschedule.

These and other automated decision-making functions are

complemented in MAESTRO with a highly interactive user

interface, allowing the user to choose the level of interaction

or intervention in the scheduling process that he desires.

DESIGN ISSUES

Consider the contrast between two operational scenarios -

one for control of unmanned orbiting platforms with numbers of

simple instruments, the other for control of experiments in a

Space Station core module. In the first scenario, it is likely

that control will be geographically distributed, schedule

development will occur relatively close to actual schedule

implementation (espescially for those experiments determined by

targets-of-opportunity, or recent atmospheric or political

occurances), significant on-going schedule revision will be

required, and resource availabilities and requirements may be

somewhat unpredictable. In the Space Station scenario,

experiment planning and scheduling will be much more fixed, the
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environment will typically be more predictable, and scheduling

may tend to be more centralized. For these two scenarios

scheduling philosophies may differ radically - e.g. resource

envelopes may be used which exactly specify the resources which
will be used for an activity, or may reflect a loose operational

envelope in which the activity must fit; the system may host a

single user or a variety of user types, each with different

requirements and different levels of authority for scheduling

decisions; and scheduling may occur either as a batch or an

incremental process. For these different scenarios, the core

scheduling problem remains the same - what differs is the

implementation of the interfaces surrounding the core scheduling

system.

Because these and future interfaces may differ, the MAESTRO

system has been developed such that the core scheduling

functions are independent of the transactions that interact with
the scheduler. The scheduling core does not differentiate

between interactions with a user on the host processor, a

transaction log on a file, or a user utilizing a workstation in

a different location. MAESTRO and its interactive displays may

be implemented on a single processor or may function as the

scheduling node in a larger network of computers and/or systems.

Further, processes external to MAESTRO may be used to directly

or indirectly enforce the appropriate philosophy. The scheduler

has different selectable options for scheduling in batch or

incremental mode. External processes can determine which users

are allowed to perform which operations on the scheduling

system. Decisions regarding how loosely or tightly resources

will be assigned can be determined by the way in which activity

resource requirements are modeled, and how closely the resource

profiles provided to the system reflect the actual resource

availabilities. This design permits the implementation of

interfaces appropriate to various scheduling philosophies and

viewpoints while maintaining the core capabilities of the
scheduler.

CONCLUSION

Scheduling is a difficult problem. The complexity of the

scheduling problem can be overcome by heuristic decision-making,

temporal constraint propagation, maintenance of multiple

schedules and resource availability profiles, and other

techniques. The problems introduced by the considerable

variability in possible operational scenarios can be vitiated by

separation of the scheduler from its interfaces, use of multiple

asynchronous processes, prioritized command management, and

intelligent preprocessing of scheduling requests. These and

other techniques are implemented in the prototype scheduling

system MAESTRO, Further work is necessary to refine these

techniques and make them execute more efficiently, but a solid

base has been laid for scheduling in the Space Station era.

MAESTRO appears to be a suitable vehicle both for future

research and as a starting point for production software.
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Abstract

This paper describes the Platform Management System (PMS)

Resource Envelope Scheduling System (PRESS) expert system prototype

developed for space station scheduling. The purpose of developing

the prototype was to investigate the resource envelope concept in a

pratical scheduling application, using a commercially available

expert system shell. PRESS is being developed on an IBM PC/AT using

Teknowledge, Inc.'s M.I expert system shell.

The research includes a proposed definition of the content of

the resource envelope, and examination of the resource envelope's

flexibility and limitations for scheduling. Our definition of the

resource envelope includes time parameters, resource usage, and

constraint considerations. The suggested format is exercised by the

PRESS scheduler, which performs both initial planning and

replanning, fulfilling two of the functions currently defined for

the PMS: short-term planning and constraint conflict resolution.

, Introduction

PRESS is a prototype expert system developed as part of an

effort to study the feasibility of using expert system technology in

the Space Station environment. PRESS implements some of the

functions that have been defined for the PMS, and uses the not yet

fully defined "resource envelope" concept that has been developed

for Space Station applications.

In a previous article [I], presented following completion of

the rapid prototype, the authors described in detail the PRESS

system functionality for the rapid prototype, and planned full

prototype capabilities. Since then, the full system prototype, with

finalized functionality and key concept refinement, has been

developed and demonstrated for NASA representatives. In the present

article the existing PRESS capabilities will be briefly described

for familiarization purposes, but the main emphasis will be placed

on those assumptions, concepts, and technical approaches which were

developed and/or finalized after the PRESS rapid prototype

demonstration and the previous publication.

I£, Discussion

The goals of PRESS are: to research the feasibility of expert

system applications in providing PMS functionality; to use (and
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therefore help define) the resource envelope concept as a basis for

automatic scheduling; to use realistic examples like the Cosmic

Background Explorer (COBE) and the Upper Atmosphere Research

Satellite (UARS) spacecraft scheduling needs as a proof-of-concept;

and to evaluate the suitability of the system development

environment for expansion of this prototype or developement of an

operational system.

The PMS [2] is a software system that provides operational

management services among payloads and platform systems for the

space station. PMS consists of an automated on-board segment, the

Platform Management Application (PMA), and a ground segment, the

Platform Management Ground Application (PMGA) .

PRESS addresses two of the PMS functions. The first of these

is the Short-Term Plan Management function. This function involves

the PMGA receiving a plan from the Platform Support Center, and

uplinking appropriate portions to the PMA. The PMGA and the PMA may

receive plan changes requested by operators, customers, subsystems,

and payloads. The second function, Conflict Recognition and

Resolution, involves the monitoring of resource usage, allocation,

and margins. Conflicts for resource usage are to be resolved on a

priority basis. This function will be used in deciding whether a

given request may be scheduled. The PMA and the PMGA are required

to modify the short-term schedule while maintaining a conflict-free

plan that does not exceed the platform's resource capabilities or

compromise its safety.

A final PRESS prototype system was completed and demonstrated

for NASA on September 3, 1987. Some functions which were implemented

in the rapid prototype were removed from the full prototype due to

memory limitations. Both PRESS prototypes taken together serve as a

proof-of-concept for all the defined functions. The following
functions are implemented by PRESS.

• Perform initial scheduling, processing requests by priority

• Perform rescheduling

• Accept schedule modification requests as resource envelopes

• Accept schedule modification requests as changes to

resource availability and/or constraints

• Resolve schedule conflicts based on assigned envelope

priorities

• Perform conflict checking

• Accept multiple envelope requests

• Place scope of user interaction at operator's discretion

- provide advice for modifications to the resource

envelope requests that would permit successful

scheduling (rapid prototype version only)

- provide capability for operator to cease processing

before completion of input file

• Perform input error checking

- on user input data file via preprocessor

- on legality of interactive query responses via

M.I capabilities

• Provide graphic and textual representation of system output
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Brief definitions of some terms are presented here to avoid

confusion with possible active usage elsewhere. An "activity" is

the item being scheduled. It may be anything from a complex

scientific experiment to a single use of a communications link. An

activity may consist of more than one event, with each event

represented as one "resource envelope". A request for scheduling an
activity is represented to PRESS in the form of one or more resource

envelopes, together with an activity header. Each "resource

envelope" is equivalent to an event and represents a time period,

one or more resources whose use is required, and a usage level for

each resource. Resource usage is assumed to be stable for

scheduling purposes. Examples of "resources" are power, an

instrument, a communications link, etc. The "schedule" or "schedule

timeline" is produced by the system to show what activities have

been scheduled within a given time period. PRESS output shows the

activities plotted against the resource used over time, so that the

schedule timeline is actually a set of parallel timelines, one for

each resource, with usage periods identified with an envelope

identifier. PRESS accepts user input interactively or from a

stored file, and is capable of both initial and rescheduling

functions, including rescheduling as required by changes in resource

availability or operational constraints. Requests are scheduled

based on externally determined priorities. Higher-priority requests

receive preferential treatment during scheduling. This includes the

automatic deletion of already scheduled lower-priority requests if

needed to successfully schedule a new higher-priority request. (See

detailed description of PRESS functionality [3]).

The presumption at the outset was that the resource envelope

concept would permit a global view of resource usage, which is

important for shared resources like power or communication links. A

global view provides protection against oversubscription, especially
in concurrently used resources.

PRESS implementation of the the resource envelope concept

included the following major points: (a) the activity is viewed in

terms of resource consumption; (b) within a resource envelope,

resource usage is considered constant, for scheduling purposes, over

the time period of the envelope; (c) activities which vary in

resources used, or dramatically in level of resource usage, must be

broken into separate events, with each event represented by a

resource envelope; (d) envelopes in one activity may not overlap in

time, and events within an activity are defined by the user in

chronological order; and (e) activities may overlap in time, and use

the same resources, availability permitting.

PRESS is implemented as a production rule system in M.I by

Teknowledge. The knowledge base contains approximately 300

entries; about 145 of them are rules. PRESS represents resources

and constraints as lists, but treats them as virtual objects. The

representation includes: resource identifier; start and stop times;

amount of resource; and an event identifier (or nil) field.

Constraints are represented in a similar manner to the resources.

The resource and constraint objects are dynamically created,
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deleted, divided or combined by PRESS during the process of

scheduling. Resource and constraint identifiers are not

"hard-coded" and are transparent to PRESS. Resource levels can be

represented as absolute units or as percentages of use, as long as

the convention is maintained consistently within one resource.

These two characteristics afford a maximum flexibility; the intent

was to make PRESS as generic a scheduler as possible, easily applied

to a number of specific applications. Requests for scheduling

include an activity header and one or more request envelopes. The

activity header specifies the priority and type of the request.

The request envelope is implemented as a list, containing the

following fields: activity identifier; envelope identifier; start

time and duration windows; resources and amount required; and

constraints generated and avoided.

The initial test application of PRESS was to schedule COBE

communication link usage. The communication links themselves were

considered as the resources (uplinks, downlinks, and links via TDRSS

or ground links were treated as separate resources). Line-of-sight

times determined resource availability. The COBE example had no

constraints. PRESS could easily perform scheduling in this case,

but the example was too limited to exercise all of PRESS's

capabilities.

The UARS observation instrument scheduling was selected as a

more complex problem. UARS contains a platform with three separate

instruments capable of performing solar or stellar observations.

Although the instruments make independent observations, the attitude

of the platform, which all share, determines what object may be

observed at any one time. Resources included power, the instruments

and the platform. Initially, in a manner analogous to the COBE

approach, the sun and stars were also treated as resources to be

"used" by being observed. However, it was found that the presence

of the sun, for example, constrained stellar observation. This

meant that even if the sun was viewed as a resource, it must be

considered as a constraint as well. Alternatively, if solar

availability was treated as a constraint solely, it became necessary

to specifiy both the sun's presence and absence as constraint

objects, since solar observations could only occur in the presence

of the sun, and certain stellar observatons only in the absence of

the sun. It was felt to be more consistent to represent solar

availability as a constraint than to have it appear as both a

constraint and a resource. Even so, it was difficult to create a

test scenario to accurately reflect a realistic activity in UARS

terms. Such an activity might include slewing the platform to

obtain a sighting, opening instrument shutters, placing certain

filters, and taking the observation. It was difficult to define

this with resources limited to power, the platform, and the

individual instruments, at least not in any obvious one-to-one

correspondence with the actions taking place. And although PRESS

can express concurrent use of resources, it cannot express truly

shared use. An example is the need to say that if a scheduled

activity already has the platform slewing toward the sun, a second

activity requiring the same action need not use resources to do it,

but rather can "share" the existing action.
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I_I. Conclusions

PRESS is a prototype system, with certain conditions and

simplifications assumed. However, conclusions, and problems the

authors have encountered during system development may be applied to

operational systems which use the resource envelope concept in a

similar technical environment.

The authors feel that the resource envelope as a theoretical

concept is very useful; it provides a global view and permits tight

control over concurrent usage of shared resources. However,

resource envelopes do not seem to be straightforward in practical

application because of the need for additional definition and

assumptions, such as determining what should be considered a
resource and what should be considered a constraint. Another

difficult decision involves breaking down an activity into

envelopes, which must take into consideration "wastage" of resources

due to the assumption of a constant level of use against the

complexity of defining and processing the request.

From this perspective, the resource envelope concept may be

needed in an environment similar to space station environment. It

is not as easily used as the exclusive scheduling approach for

individual payload activities. The optimal balance between the

resource envelope approach and a more traditional commanding

scheduling approach in a multi-payload application awaits further

investigation.
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Abstract

Resupply scheduling for the Space Station presents some
formidable logistics problems. One of the most basic problems is
assigning supplies to a series of shuttle resupply missions. Some
supplies relate to life-support, others are required by critical
experiments, and still others are necessary for routine maintenance.
If an emergency occurs or the space station inventories are depleted
unexpectedly, resupply plans must be quickly adapted. The speed at
which a logistics expert can replan schedules is a critical factor in the
successful operation of the space station. The logistics expert
requires a great deal of knowledge to construct a resupply schedule
which satisfies the life-support, experiment-support, and maintenance
constraints.

The Artificial Intelligence Department of General Research
Corporation (Huntsville) with the logistics expertise of United Space
Boosters Incorporated constructed a prototype logistics expert system
which constructs resupply schedules. This prototype is able to
reconstruct feasible resupply plans and, in addition, analysts can use
the system to evaluate the impact of adding, deleting or modifying
launches, cargo space, experiments, etc.

1 Introduction

In this paper the Heuristic Assistance in Tactical Scheduling (HATS)
prototype system is described. This system was built by Steve Tanner and
Angi Hughes of GRC with domain expertise provided by Jim Byrd of USBI. It
was implemented on a Symbolics 3670 lisp machine with the use of the KEE
software tool. A more advanced implementation will be undertaken using
tools developed in house and which will work in VAX and PC environments.
The system, while still very much in its infancy has proved viable for small
scheduling tasks, and with time will work with larger more complex problems.
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The system is general enough in nature to help with many types of scheduling
and logistic problems, however, the main problem domain addressed by
HATS is the supply and resupply payload schedules for shuttle launches
necessary to maintain the space station.

Some of the techniques that HATS incorporates are: object oriented
structures that take full advantage of inheritance facilities, hypothetical
reasoning features that allow the system to try different solution paths without
data corruption, heuristic methods to allow for some level of control and
constraint of the immense search space that scheduling problems often
generate, and rule based reasoning to help with the capture of domain expert
knowledge.

2 Structure of the Knowledge Base

By using a rich object oriented environment in which to implement this
system, a great deal of reusable and interrelated information can be stored in
a concise, consistent and understandable manner. The two main categories
of objects dealt with are the supplies that must be scheduled on launches and
the launches themselves. The supplies that are to be scheduled include a
broad range of supplies necessary to operate and maintain the space station,
support experiments and deploy, retrieve and maintain communications and
observation satellites. This means that criticalities I, II, and III items are
scheduled as well as the experiment containers, platforms and any equipment
that the experiments themselves need. Extra crew and scientists that a
particular experiment needs are simply represented as another necessary
supply.

Thanks to the use of inheritance, much generic information about each of
these categories is defined in their high level object abstraction. The specific
information about each individual launch and supply is stored in each
individual object instantiation. Stored information for launches includes such
data as projected launch date, maximum payload size and weight, crew size
(excluding experiment scientists), and other pertinent launch information.
Supply information is considerably more complex. The supply objects have
basic size and weight information, but in addition, they have date needed by,
and date needed after information. Also, because of the interrelated nature of
some supplies, relationships between supply objects are also possible. For
example, as mentioned above, extra crew needed for a particular experiment
are scheduled as another supply. It would do little good to schedule the extra
crew for one launch and the experiment equipment for another. There must
be some way for each supply to know what other supplies it requires. This
type of information is easily stored in attribute slots on the objects themselves.

As another more complicated example of supply interrelationships, there
can be several scheduling paths based on interrelationships of supplies. In
the above case, the experiment equipment could indeed go up on a launch
prior to the experiment crew. The equipment could sit dormant on the space
station until the required personnel finally showed up. It is also possible, but
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not likely, that the crew could go up before the experiment equipment and sit
around until it arrived. This scenario happens quite frequently with field
service personnel back on earth. The three different schedules mentioned
here (crew and equipment on one launch, equipment first, crew first) are all
three possible and even workable supply schedules. Ways to make the
system favor one schedule over the others is discused a little later on, but the
ability for objects to have defined relationships with one another is a great
help in sorting out these problems.

Because objects in this environment allow for methods, these supply
objects can be made to automatically make changes of themselves and other
objects as the data changes. (Methods are like programs that can be run
when certain events occur.) For example, adding an extra crew member for
an experiment will mean that more food and oxygen will be consumed during
a specific time period. This means that there must be a corresponding change
in the food and oxygen supply objects. Either current objects must be
increased, dates shifted, or new objects created. This type of automatic
readjusting can be handled by methods that are keyed to run whenever
supply objects are added. Also methods can be used to create supply objects
to help with cyclic types of resource use. For example, the user may tell the
system that 100 pounds of gas x is used per month. The methods may
automatically generate the necessary gas x objects to make sure this
requirement is met. Direct down links will eventually provide on-orbit
inventory quantities against which the system will automatically plan
replenishment payloads.

Another type of interrelationship of supplies is one supply with a fixed
date of need and another supply with no known date, but with a known link to
the first. Because the first supply has a fixed date, the second supply must be
scheduled either before or concurrent to the first supply. This means that even
though the second supply has no obvious date itself, there is a necessary
scheduling date inherent in its relationship with the first supply.

The initial state of the knowledge has the basic set up of the supply and
launch data. The user of HATS has a graphical user interface to help with this
initial set up. The dates placed on the supplies is optional, and as the system
works, any unknown dates are taken to mean that the supply can go on any
launch, unless of course there are relationships with other supplies.

3 Hypothetical Worlds and Rules

Once the initial data has been set up, the system tries to find a way to
place all the supplies on the limited number of launches available. This is
accomplished by the use of a rule base and two techniques known as
hypothetical reasoning and worlds. As rules in a rule base are fired, they
generally assert new facts. In hypothetical reasoning these new facts are
considered hypothesis rather than true facts. These hypothesis are asserted
only in separate autonomous worlds. In this way, if a trail of asserted facts
leads to a dead end, there is no need to retract all the facts. Often it is
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impossible to retract a fact, and at the very least it is time consuming and
difficult. With hypothetical worlds, if a path leads to a dead end, the useless
worlds are ignored or thrown away, and no facts need to be retracted.

As the system runs, a trail of worlds is created as a tree. Each world
leads to at least one more world until a dead end is reached. A dead end

means that either a workable schedule has been found and the system can
quit, or this current path is unworkable and another must be found. Each
world has one supply placed on one launch. If there are 10,000 supplies to
be scheduled, a branch of worlds with a depth of 10,000 nodes represents a
workable solution. If the branch does not go 10,000 deep, then some supplies
would not fit the current launch configuration.

These worlds can be used as a simple brute force method for finding all
possible scheduling solutions. It is a simple matter to try all supplies on all
launches until a complete path is found. However, this is combinatorial and
even with the use of several super computers, would require an unreasonable
amount of time. This is especially problematic for last minute payload
changes. That is where the use of the rule base can really pay off.

Because rules are used to create the world tree, they can help to trim the
tree and eliminate many of the paths that will probably lead to unworkable
dead ends. As a very simple example, scheduling larger items on launches
before looking at the smaller items will point out dead ends far faster than the
other way around. Also Criticality I items can be scheduled before other items
so that if only partial schedules are found, then the critical items are
scheduled and optional equipment can be left behind.

Another advantage with the combination of worlds and rules is that new
ideas can be tested quickly and effectively. It is fairly easy to change or add
rules to the rule base. If a change speeds things up and finds solutions faster,
then the new technique can be left in place. If not, then the changes need
only be taken out of the rule base.

4 Future Work

As funding allows, work will concentrate on several areas. The rule
based heuristics that help trim the search tree will be improved considerably.
The current rule base takes about thirty criteria into account. As domain
expertise is codified, this will improve and expand. This expansion will be
aimed specifically at speeding up the system by trimming unfruitful branches
off the world search tree.

The interrelationships between objects will be expanded. This area is
fairly rudimentary now and should be revamped and improved. Many types of
relationships have been defined and need only be incorporated into the
system. The infrastructure is already in place to do this, and is flexible enough
to take new relationships into account as well.
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The system will be rewritten to use an Entity Attribute Relationship
database and rule system that we are currently working on in house. This
system will be considerably faster than the current knowledge base and rule
system now being used. During this rewriting, a more generic form of HATS
should emerge. This generic tool will be useful as a baseline for other types
of scheduling problems.

An improved user interface will be implemented. The current interface is
very useful for creating launch and supply objects and placing them in the
object hierarchy, however there are several things that need to be added. The
interface needs to make defining relationships between objects easier and
filling in slot attributes easier.

The entire system will be ported to more mainstream types of machines.
The Symbolics is a very good environment in which to develop systems like
this, however at this time it is unreasonable to assume that eventual users of
HATS will have such equipment on their desks.

More forward looking analysis techniques should be added to the
system. For example, if no complete schedule can be found, the system could
suggest other solutions. It might determine what items would cause the least
trouble if left behind, or suggest the fewest number of additional launches that
would alleviate the problem.

5 Conclusions

The HATS system has shown that several AI techniques are useful when
applied to scheduling problems. Basic object oriented structures are good for
setting up the types of data that are required and in defining the relationships
between the data. Objects that represent launch and supply items are easy to
manipulate and alter. A world tree is a useful way to represent the planning
paths taken while determining a schedule. Rule based reasoning is very
effecting in both creating the tree and constraining the search paths that the
tree represents. The system is flexible and can expand as domain expertise is
incorporated. Application of this system to logistics support will not only
improve support response and effectiveness, but also provide a valuable tool
for future program planning.
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Abstract

The growth and development of our goals in space utilization

will reach out to utilize every possible technology. Artificial Neural

Systems (ANS) is a newly emerging technology which has already
indicated a potential solution to many space engineering problems. A

particularly interesting feature of ANS's is their ability to construct

vital generalizations or inferences from sample data without the

need for conventional programming. In order to evaluate ANS's, the

Artificial Intelligence Section is conducting several initial projects

implementing ANS's, developing a dedicated ANS workstation, and

developing applications to assist with the immigration of this
technology.

This paper will describe the neural net based speech synthesis
project. The novelty is that the reproduced speech was extracted

from actual voice recordings. In essence, the neural network (NN)
learns the timing, pitch fluctuations, connectivity between individual

sounds, and speaking habits unique to that person. The parallel
distributed processing network used for this project is the

generalized backward propagation network which has been modified

to also learn sequences of actions or states given a particular plan.

Introduction

An inherent nature to human behavior is its dependency on

serial order. Our learning methods, speech, and chain of thoughts all

follow a succession of events. The parallel distributed processing
network being used by this project is a generalized backward
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propagation network with the usual input, hidden, and output layers

but with an added layer which learns a sequence of actions which

are produced in a learned order given a particular plan. In describing

the NN based speech synthesizer, the technique used to formulate

the various characteristics in a persons speech is first discussed. An

introductory explanation of the generalized backward propagation

network along with its modification to learn sequences will also be

provided. This will be followed with a description of the various

components of the NN and their relation to the speech parameters.

Linear Predictive Coding

Humans produce speech by sending pulses of air (the vocal

chords) through a resonating cavity (the vocal tract) which is

constantly changing shape (velum, tongue, lips, and nasal cavity) to

produce a wide range of sounds. The human vocal tract can then be

modeled as a time-varying linear filter. The filter can be excited by a

series of pulses to represent the pitch or the voiced segments of

speech and white noise to represent the unvoiced segments of

speech.

Linear prediction coding (LPC) is a technique which efficiently

represents the speech signals in terms of a small number of slowly

varying parameters[I]. Linear predictive analysis converts the

combined spectral contributions of the glottal flow within a pitch

period, the vocal tract, and the radiation at the lips into a single

recursive (all-pole) time-varying filter. The transfer function in the

complex Z domain of the LPC filter can be written as:

H(z) =

GAIN

P

1 ,Y_,a z
k

k=l

-k

Thus the linear filter is completely specified by a scale factor GAIN

and p coefficients a 1 P, a 2, .... , a The linear filter has p poles which

are determined on factors such as the length of the vocal tract, the

coupling of the nasal cavities, the place of the excitation, and the

nature of the glottal flow function. Nineteen poles and a 16 KHz

sampling rate were selected to compute the LPC coefficients for this
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project. Speech recordings were taken with the MIT developed

software package: Speech Phonetic Research Environment (SPIRE) [2].

Ordinarily, LPC is used to compress speech on bandwidth

limited communications channels. LPC analysis produces a set of all

pole filter coefficients with an added "residual". The resultant

residual is the "true" excitation source. To compress speech, this

residual is usually discarded and replaced with an approximation of

the gain, and an indicator of whether the segment is voiced or

unvoiced. For voiced segments of speech the pitch rate is also
expected. The approximations for the voiced/unvoiced decisions and

pitch rate explain why the reconstructed signal sounds mechanized.

At this point, it is important to understand that if the filter

coefficients produced by LPC analysis are re-excited by the "true

residual", then the waveform can be reconstructed without any
degradation.

Parallel Distributed Processing

The parallel distributed processing network used in this project

is a form of the "generalized delta-rule" known as "back propagation
of error"J3,4]. In summary, the NN consists of a network of

unidirectional processing units connected by weights. The state of

each processing unit is determined according to the activation
function:

n

= + ¥.)xj o(aSix
i=l

where x i is the activation function of the ith unit, wji is the weight

from the ith unit to the jth unit, gj is a bias associated with the jth

unit, and n is the number of units in the network. A processing node
whose output is fedback onto itself is termed recurrent.. This

recurrence is the technique which provides a NN the capability to

learn a sequence of events given a particular plan[5]. ANN with an

input, hidden, state, and output layer are depicted in figure 1.
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Figure1. Network showing input, hidden, output, and state layers.

Speech Synthesis Using a NN

The network produced here is similar to that produced by

Sejnowski[6]. Unlike NETtalk which generates the phonetic

translation for an English word, this synthesizer will produce the

appropriate sequence of LPC coefficients and the spectrum of the

residual for an English input.

To generate the data for the net, phrases which are rich in the

English speech sounds were selected. For instance, for a phrase rich

in the sounds [i] as in see, the phrase "Eva likes green peas" was

selected. Other examples include the phrases "Ethel held that you

lose your friends if you permit them to be in debt." for the vowel

sound [e] as in help and "Alice planted three rows of asters." for the

vowel sound [m] as in bat. The attempt here is to generate a database

with many examples of the various phonetic sounds in context with

other sounds to capture the varying filter characteristics as

phonemes are merged. After recording a phrase, the laborious task

of segmenting and labeling the time based waveform with the

appropriate letter follows. Having completed the segmentation and

labeling of a phrase, the LPC analysis and spectrum for the entire

phrase is computed. Several more phrases and 500 of the most

commonly used words in the English language are still require[7, 8].

The NN is presently configured such that the input layers

consist of 5 slots for the alphabetic characters and 2 special

characters ("." and "?"). Training takes place by shifting a character
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into the input layer at each cycle. The output layers consist of the 19

LPC coefficients and the spectrum of the true residual at a particular

instant in time. Because the network is also learning sequences, each

letter is represented by a series dependent set of 19 LPC coefficients

and 256 spectral lines between 0 and 8kHz to represent the residual

of the waveform. An added output layer is trained as a decreasing

counter of the number of LPC sets for each letter. This output layer is
monitored for a zero count to shift in a new letter.

Conclusion

The synthesizer is still under development, however,

preliminary experiments have provided positive indications that the

procedure will work. The experiments were conducted on the

Symbolics computer. Due to the large size of this NN and the large

data base, significant computer time is required. Currently under

development by the AIS is a transputer based NN workstation. This

workstation is being developed to satisfy the processing speed

requirements inherent to most NN problems[9].

Acronyms

ANS artificial neural systems

kHz kilo Hertz (cycles per second)

LPC linear predictive coding

NN neural network
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ABSTRACT

Neural net models work by simulating a collection of

biological neurons and the interconnections between them. The

learning abilities of their algorithms derive from ingenious ways

to self-modify the connection weights. The specification of

neural net models is done in terms of the characteristics of an

individual node, the interconnection between the nodes, and the

initial weights of interconnections and how they change. These

models are based on the present understanding of how the

biological neurons function. In this paper, we present

implementation of the Hopfield net which is used in image

processing type of applications where only partial information

about the image may be available. Image-classification type

algorithm of Hopfield and other learning algorithms, such as

Boltzmann machine and back-propagation training algorithm have

many vital applications in space.

I. INTRODUCTION

Neural net models are based on the present understanding of

biological nervous systems since they offer many invaluable

insights. Designing artificial neural nets to solve problems and

studying real biological nets is changing the way we think about

problems and lead to new insights and algorithmic improvements.

A neural network node as a model of a biological neuron is

usually implemented as a non-linear processing element whose

output is a non-linear function of input. Typically there are

continuous input to and output from a node. An individual node

is slow compared to modern digital circuitry, however, massive

parallelism increases overall speed. An individual node weights

ith input with a factor w and determines a weighted sum, S.

i

N

S -- _ w x

i=l i i

To each node is associated a quantity, theta, called

internal offset, which determines a threshold above which the

neuron represented by the node will fire. The quantity, alpha =

S - theta, is passed through a non-linear function, f(alpha) to

get the output. The three main types of non-linear functions are

designated: (i) hard limiter (step function), (2) threshold logic

element, and (3) sigmoidal non-linearity. Other more complex
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non--linearities (based on time

operations other than summation)

increased computation time.

dependencies, time integration,

are possible but they cause

2. SPECIFICATION OF A NEURAL NET MODEL

Following three quantities are generally required to specify

a neural net model [3]:

A. Net topology: This includes interconnections among nodes and

number of layers of nodes (one or two or more).

B. Node characteristics: This includes offsets of individual

nodes and the type of non-linearity.

C. Learning rules: These are concerned with connection weights

and include initial set of weights and how weights should be

adapted during use to improve performance.

As previously mentioned, neural networks achieve high

computation rates due to massive parallelism. Each computational

unit is simple. Because of a large number of processing units we

have a high degree of fault tolerance (or robustness). Damage to

a few nodes will not significantly impair overall performance of

the system. Another important feature is the adaptation of

weights ("learning") based on new inputs. This enhances the

robustness because even if there are m_nor variations in the

characteristics of processing elements, the overall performance

is maintained.

3. CLASSIFICATION PROBLEM

The classification problem can be stated as follows:

determine which of M classes is most representative of an unknown

static input pattern containing N input elements. Such problems

are of common occurrence in many situations. Examples include:

(a) speech recognizer, where input patterns are spectra of sounds

and output classes are corresponding vowels or syllables; (b)

image classifier, where input patterns are gray scale level of

each pixel for a picture, and output classes are symbols

identifying corresponding objects; and (c) spatial locator: where

input patterns are omnl-directed range measurements and output

classes are identifications of sub--regions.

A neural net classifier is characterized by parallel

computations and parallel input/output. N input elements are fed

in parallel over N analog lines. Inputs may be bits or

continuous over a range. The network first computes matching

scores and then selects the maximum score and enhances it so that

only one most likely class will be selected. Neural net

classifier can be made adaptive to new classes or exemplars by

usinE a learning algorithm that will modify the weights of
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connections as new classes are presented to the net. An

implementation of a particular type of classifier is discussed in

the next section.

4. THE HOPFIELD NET

The Hopfield network is desiEned for binary inputs.

Examples of such situations include (a) pictures or imaEes in

terms of on-off pixels, and (b) ASCII representation of text with

each character represented by 8-bits. Hopfield network

applications are in associative memory and in solvinE

optimization problems. In associative memory applications this

network can locate the correct information from a supplied piece

of partial information. When applyinE the Hopfield network the

followinE limitations should be carefully considered.

(i) Spurious converEence: H should be small compared to N. If M

is larEer than about 15_ of N, converEence may incorrectly

occur to a pattern not matchinE any of the exemplars.

(2) Instability: A Hopfield net is said to be stable if upon

usinE an exemplar as an input, the same exemplar is output.

If too many bits are common between two patterns, the net

becomes unstable.

We implemented the Hopfield network in Lisp on Texas

Instruments Explorer which is a Lisp architecture computer. A

run was made usinE two exemplar patterns with 171 pixels

represented as *'s and -'s which are converted into +i and -i by

the proEram, respectively. When the network is presented with a

test input pattern with some of the pixels chanEed, it responds

with the number of the exemplar which comes closest.

Another set of interestinE runs was made with M = 2

exemplars and N = i0 pixels. We see that when only one pixel is

different from the exemplars in the input pattern, the network

does come up with the correct answers for the matchinE exemplar

pattern. The alEorithm converEes to the correct exemplar

pattern. The network was then presented with two input patterns

which differed from both the exemplars in exactly the same number

of pixels, namely, 5 pixels, half of all the pixels in each

exemplar. The network does not converEe to any of the exemplars,

as would be expected.

We have also demonstrated what may be termed the "soldier's

helmet" phenomenon. The network is presented with two different

input patterns with only the first two pixels matchinE with

either one of the exemplars. The network identifies the correct

match and, in addition, the converEence is to the appropriate

exemplar. This run dramatically illustrates the ability of the

Hopfield network to reconstruct the whole picture from a partial

one.
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5. PLACE-FIELD AND GOAL LOCATION MODELS FOR A ROBOT

5.1. PLACE-FIELD MODEL

This model is based on the behavior of place-field cells of

the hippocampus (one of two ridEes alone lateral ventricle of the

brain) of a rat. Place-field cells fire at their maximum rate

only when the animal is at a particular location relative to a

set of landmarks. Such locations are called place fields.

Zipser [5] developed a computational model to relate the

confiEuration of landmarks to the location, size, and shape of

place fields. The inputs to the model consist of confiEuration

of landmarks in the environment toEether with the location of the

observer. The output from the model represents the activity of a

place-field neural unit in the observer's brain. A set of simple

objects is used as place cues and the size of retinal imaEes is

indication of location. The model uses this information to

provide quantitative predictions of how the shape and location of

place fields chanEe when the size, tilt, or location of these

objects is chanEed.

The place--field neural model is desiEned for pattern

recoEnition. It fires at maximum rate when the observer is at a

desired location. A stored representation of a scene is compared

to a representation of the current scene. Closer the viewer is

to the stored scene, the better is the match. In determininE the

closeness, it is sufficient to use only a few discrete objects

rather than the entire scene. A point P in two dimensional space

can be uniquely located by its distance from three landmarks a,

b, and c. It can be shown that in three dimensional space a

point can be uniquely located by its distance from four

landmarks.

When the robot is at a location P, the representations of

the landmarks a, b, and c including the distance to P are

recorded in some way in the memory. Upon return to P, the

robot's sensory system can now Eenerate a set of current

distances. If these representations, other than their distance

components, are not affected too much by the viewinE postion,

then the current representation of each object will differ from

its stored representation only to the deEree that the object's

current distance from the observer differs from its distance to

P. A neuron whose output is a summated measure of the similarity

between these current and stored representations for each

landmark will have the properties of a place-field unit.

5.2. CURRENT APPROACH

In contrast to the place location approach described above,

we will not make the assumption of a "landmark recognizer" or any

other sophisticated pattern recoEnition devices. Rather, our

method will be dependent only upon the range sensor information.
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The robot is assumed to operate in a two-dimensional reEion and

to have ranEe sensor detectors fixed in many directions from its

center. The robot will travel translationally only --- so that it

is always oriented towards a specific direction and there is no

rotation. Many of these assumptions can be relaxed, as more

sophistication is added to the model. The object of the robot is

to explore the two-dimensional reEion to which it is confined.

After sufficient exploration, it is able to naviEate between any

two points. As mentioned before the robot will rely only on

ranEe sensor data and will be unable to distinEuish the anEle at

which it is approachinE an obstacle. Movement of obstacles will

be allowed and the robot will expected to naviEate in a

reasonable manner. So as not to become myopically confused by

the obstacles and boundaries of the reEion, the robot will have a

buffer distance always separatinE it from any other objects or

boundary. The robot sensors are assumed to be of unlimited

distance.

NaviEation mode of the robot will start by movinE from a

"corner" in the direction of one of its sensors. The robot will

assiEned a predefined rectanEular subreEion, R, which is

subdivided by the robot for exploration. The key factor in

determininE the "acceptability" of a subreEion is whether the

sensor vector varies continuously. An unsatisfactory subreEion

will be further subdivided into smaller reEions so that the

sensor vector is continuous. The robot Eathers sensor data and

data on chanEe in position from each successive rectanEular

subreEion.

In the naviEational mode, the robot will have to

periodically back up in order to insure that its connection

weiEhts are sufficiently tuned to discriminate one subreEion from

another. This is a hiEhly unsupervised type of learninE

scenario, so that only certain types of neural net models would

be acceptable. The work on learninE neural nets [2], namely,

Boltzmann machine [l,2],2the competitive neural net, and siEma--pi
neural nets [4] is beinE continued.
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ABSTRACT

Future space systems are envisaged to be large,

complex, multi-modular multi-functional systems. A

large degree of intermodular autonomy and at the same

time a high level of interconnectivity is expected. We

have attempted to identify the features essential for

such a system. These features have further been

studied in the context of Neural Networks with the aim

of arriving at a possible architecture of the

distributed control system-specific features of the

Neural Networks, and their applicability in space

systems will be discussed.

*Work supported by Advanced Space Flight Systems of

United Technologies.
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Abstract

This paper will present results of preliminary research on

the design of a Knowledge Based Fault Diagnosis System for use

with on-orbit spacecraft such as the Hubble Space Telescope.

This paper discusses a candidate data structure and

associated search algorithm from which the Knowledge Based System

can evolve. This algorithmic approach will then be examined in

view of its inability to diagnose certain common faults. From

that critique, a design for the corresponding Knowledge Based

System will be developed.

Introduction

The research reported in this paper is focused on the

development of an efficient fault diagnosis software system to be

used in the operation of on-orbit spacecraft such as the HST

(Hubble Space Telescope). There are several factors which

indicate the need for an efficient fault diagnosis system. Among

these reasons are I) the desire to detect any fault before it

causes damage to the spacecraft (an unlikely but possible event),

2) the desire to have confidence in the accuracy of the
scientific data, and 3) the desire to schedule maintenance

missions on some sort of cost effective time-line.

The scenario envisioned in this report is an automated fault

diagnosis system monitoring the downlinked telemetry reporting on

the health status of the spacecraft. This system would act as an

intelligent assistant to the operations staff. It would detect

abnormalities in the telemetry and deduce the hardware fault

causing this indication. It should also be able to project

trends in the data and give reasonable predictions of the

remaining useful on-orbit time of any replaceable component.

The Data Structure and Associated Algorithm

The efficiency of a computational solution to any interesting

problem depends, in general, on the choice of two items: a data

structure appropriate to represent the structure of the problem

and an algorithm which can operate efficiently on the selected
data structure. This observation holds true even in those cases

in which the algorithm is complemented by heuristic procedures.
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The importance of the data structure arises from the

following observation which is generally true: it is usually the

case that the more appropriate the data structure the less

complex the algorithm and associated heuristics. One criterion

used for selecting a data structure is its resemblance to the

human representation of the problem being investigated.

One of the primary human tools in fault diagnosis is a design

schematic which shows the relations between the functional

components of the system. There are two data structures which

are analogous to a design schematic: a Directed Acyclic Graph

(DAG) and a Tree. Both of these are hierarchical structures

which can represent naturally the functional hierarchy found in

design schematics. In the data structures this hierarchy is

represented by "parent-child links" where a parent node can have

several child nodes and represent the fact that a functional

component in the design schematic can have a number of functional

subcomponents.

Both a DAG and a Tree have at least one designated node which has

no parent node. This node is called a "root node" A tree, by

definition, has exactly one root node. A DAG may have many such

nodes. The concept of a unique root node in the data structur@

has a strong analogue in the functional design schematic: th4

entire system. For this reason, the choice of data structures is

limited to a Tree or a "Tree-like DAG", the latter being a

Directed Acyclic Graph restricted to having one root node.

The main difference between a Tree and a Tree-like DAG is

that the nodes of the former are constrained to have exactly one

parent node whereas the nodes of the latter may have more than

one parent node. This difference will impact the efficiency of

representation of the design schematic. If a component is the

design schematic can be a part of only one superior component,

then the Tree data structure is the preferable representation.

If a component may be a part of more than one superior component,

then a Tree representation will have to duplicate nodes for that

component, attaching a duplicate as a child node to each node

which represents one of the superior components. Since the DAG

does not require this artificial duplication, it is the data
structure selected for this research.

In addition to the Tree-like Directed Acyclic Graph, an

auxiliary data structure is used in order to improve the

efficiency of the node creation algorithm. This auxiliary data

structure is to be used to detect duplicate names and avoid the

creation of duplicate nodes in the DAG. In order to use this

auxiliary data structure, one must remember that a node in any

graph has both an ID and a label. The ID is the variable by

which the program accesses the structure representing the node.

In LISP this would be called the structures "print name". The

label is a name associated with the node. In this data

structure, the name of the node is the name in the design

schematic of the the component represented by the node. The

requirement is to avoid generation of duplicate nodes for the

same component in the schematic; i.e., nodes with the same label.
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The auxiliary data structure chosen for this is a Hash Table

which will store pairs of the form (key, value). The key for an

entry will be the node label and the value will be the node ID;

thus we have (Node-Label, Node-ID). Any attempt to create a node

to represent a named component in the design schematic must first

check the Hash Table. If the component be already represented,

its Node-ID will be returned. Otherwise a new node may be

generated and named as usual.

There is one restriction which must be observed when using an

auxiliary data structure. Both the Directed Acyclic Graph and

the Hash Table must be defined and accessed as a single abstract

data structure. More specifically, there must be a single set of
constructor and accessor functions which treat the two data

structures and an interdependent pair and enforce the logical

relations between the two. Otherwise, the data in the two will
become inconsistent and thus useless.

The Directed Acyclic Graph was implemented in VAXLISP by use

of the COMMON LISP structure. The following describes a node:

(Defstruct (Component

(:conc-name Node-)

:predicate)

"A node for representing a component in the design schematic_

(Name Nil) ;The name in the design schematic

(Subcomponents Nil) ;Note the default values.
(Contained-In Nil)

(Search-Seq 0))

The Hash Table was

variable.
implemented as a COMMON LISP global

(Defstruct *Component-List* (Make-Hash-Table :Size 197))

As mentioned above, the Directed Acyclic Graph and Hash Table

must be accessed as a single abstract data type. A typical
function is the one which creates a new node. It first checks

the Hash Table to avoid making a duplicate. If it continues, it
first updates the Hash Table and then creates the node.

(Defun Create-Component (Schematic-Name)

"Creates a node to represent the component with

the specified name in the schematic"

(Unless (Gethash Schematic-Name *Component-List*)

(Let ((Node-ID (Gensym "NODE-")))

(Setf (Gethash Schematic-Name *Component-List*)

Node-ID)

(Set Node-ID

(Make-Component :Name Schematic-Name)) )))

Having established the data structure for representing the

components, it is now time to discuss the design of an algorithm

to do the searching required by fault diagnosis. This design
actually has two such algorithms, SEARCH and SWEEP, built around

the concept of a search sequence number.
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Search sequence numbers are a generalization of the concept

of node markings found in many graph and tree search algorithms.

Node marks are generally thought of as Boolean variables having
the values TRUE or FALSE. An alternate representation of the

node mark would be a search sequence having only the permissible

values on 0 or i.

In the search sequence approach, there is a global variable

which counts sequentially the searches undertaken during the

current session. This variable is passed as an argument to the

search procedure. As the procedure visits each node, it

processes the node only if the nodes search sequence number is

less than the current search sequence. If processed, the node is

marked with the current search sequence, is expanded, and its

subnodes evaluated for possible search.

The SWEEP procedure is called periodically to reset the

search sequence of each node to 0 and to reset the global search

sequence variable to i. The nodes are visited by a simple Depth
First Search. One should note that this exhaustive search is

called much less frequently than the directed search mentioned

above. This results in a reduced overhead due to calling SWEEP.

The algorithm SEARCH is a Best First Search with iterativ_

deepening. It is called with two parameters - a node ID and a

search sequence number. At each level, the node is examined to

see if it is marked with the current search sequence number. If

it be so marked, the next node in the search priority list is

examined. Should the node not be so marked, it is given the

current search sequence number and examined. Part of the

examination is obtaining the subcomponent list and merging that

with the rest of the search priority list to form a new search

priority list. Nodes which appear more than once will be given a

higher search priority on the assumption that if two failed

components share a subcomponent then that subcomponent is

suspect.
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Conclusions and Directions for Future Work

While it seems obvious that an automated fault diagnosis

system would be of considerable benefit in the operation of

on-orbit spacecraft of the complexity of the Hubble Space

Telescope, it is also apparent that an algorithmically based

system will not be sufficiently sophisticated.

One flaw in an algorithmically based system is its inability

to reason about faults that do not correspond to failed

components in the design schematic. A simple example of such a

fault is a bridging fault or short circuit, both of which

represent components which are not present in the design
schematic.

One of the major modifications which will be necessary is the

design of a heuristic which can make reasonable modifications to

the data structure representing the design schematic in those
cases in which the observed fault is not consistent with the

normal schematic. This heuristic will include representations of

the physical components in order to postulate plausible bridging

faults and short circuits. Such systems are discussed

extensively in the research literature [1,2,3,4,5].
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Abstract

It is imperative in resource-sensitive and critical command and control applications to
provide automated systems with the proper amount, organization, presentation, and
utilization of expert knowledge. The goal of this paper will be to describe Case-Based

Reasoning as a vehicle to establish knowledge-based systems, based on experiential
reasoning, for possible space applications. This goal will be accomplished through an
examination of reasoning based on prior experience in a sample domain, and also through
a presentation of proposed space applications which could utilize Case-Based Reasoning

techniques.

Introduction

Much research has been conducted with the purpose of understanding and formalizing

the representation and use of experiences in problem solving [1, 2, 6, 7, 9, 10]. Case-
Based Reasoning, CBR, is an area of study which examines the role of experiential
reasoning in human problem solving. CBR techniques provide the ability to define,
store, retrieve, and process previous experience. These techniques have been used in
various domains, i.e. legal reasoning, structure survivability, diplomatic interaction, and
others [1, 4, 5, 8, 10].

The majority of the efforts to date have been in the academic environment. Case-
based reasoning is just beginning to emerge as a viable method for providing rich,
knowledge-intensive foundations for the production and operation of expert systems. For
example a new initiative, led by DARPA, is under way to develop CBR systems for the
Defense Department.

There exists a need for the encapsulation of prior experiences for many forms of

problem analysis and decision aids. Some general domains where prior situational
experience provides human operators with valuable insight are:

- Multi-sensor fusion and interpretation,
- Feature extraction and modeling,

- Diagnostic action and monitor facilities,
- Command, control, and communications,

- Training by Example or Tutorial Assistance.
Case-Based Reasoning, CBR, can be utilized as a method for structuring appropriate

domain knowledge and processing capabilities to provide experiential reasoning in
knowledge-based systems and conventional systems. For purposes of this paper the basic
concepts of CBR will be discussed along with a description of an example domain. The
last portion of the paper will present a list of possible applications related to the space

program.

* Research for this paper was completed and is ongoing through independent efforts.
Contact for further information: (317)-478-5910 j.a.king@dayton.ncr.com
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Case-Based Reasoning and a Representation Framework

Case-Based Reasoning, CBR, has been used by experts in various fields to accomplish

the generation, examination, and learning of situation-based actions, or problem
solutions, which are based on a collection of previous cases of experience or hypothetical

experiences. Dr. Edwina Rissland of the University of Massachusetts states: "Design is
an excellent example of a domain where CBR techniques are used for complex problem
solving, where new solutions are found through analogical transformations of past

11ones ...

There are two basic types of CBR:
- Precedent-based CBR in which past cases are precedents which are interpreted to

provide solutions, analyses, and explanations of present cases.
- Problem-solving CBR in which past cases are accessed to provide new approaches to

present situations. Analyses and explanations are not provided as a product of the

case-based reasoning process.

A Case-Based Reasoning System Structure

The following steps are appropriate as a guideline of the process for a case-based

reasoning system [3, 6a].

A. Presentation to the system of a new situation in the domain of the case-based system.

B. Analysis of the new case to create the reference points for retrieval.
- This may include a specific interface for the new case. Such as a forms interface.

- A forms interface may provide the system with the capability to begin
retrieval based on incomplete information.

- The retrieval space may be reduced based on various attributes. As the form
is filled out to describe the new situation, specific rules may apply to guide

the user in defining the new situation. This guidance will also cause pruning
of the amount of knowledge that the system will search through during
runtime.

C. Locate and retrieve a potentially applicable case from long term memory.
- Locate a suite of potentially applicable cases.
- Provide a structure for a long term memory structure which will represent

"worlds" of cases, or groupings, meta-sets of cases.

D. Determine which portion of the old case might be applicable to the present
situation.

- Determine which portion or portions of the individual cases may simulate or

relate to the present situation.
- Relate the combinations of portions to provide a relationship which can help

solve the present problem.

E. Derive the targeted value for the current case through various interpretations and
actions:
- The role of the targeted portion of the previous case in the success or failure of

the previously derived plan.
- Choice between a previously-used inference method or the value.
- Potential applicability of the above to the current case.
- A "weave" technique will be needed to relate target locations from various cases.
- Evaluate "real-world" constraints that are associated with previous case attributes

for determining the "real-world" effects on the present situation.
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F. Checktheproposedvaluefor consistencywith thecurrent case.
- Further constraint checking based on "real-world" knowledge that is associated

with the domain. (Common-sense checking)

Go Provide default inference techniques if no similar case is found or if the constraints
associated with the reasoning about the new situation are not common-sense in
nature

- Results for the value(s) of the case can be computed by default inference
techniques and updated in the case to provide a new experience for the system.

H. Update the representation of the current case.
- Update any "ripple effects" which are caused through the determination of a value

in the present case.

I. Establish the new case in the memory of the case-based system
- Provide the proper links and definitions to encapsulate this knowledge and

provide a learning experience for the computer-based system.

Ongoing Research in an Applicable Domain

The SURVER system, SURvivability/Vulnerability Analysis Through Experiential
Reasoning, is being built for the Air Force Weapons Lab, AFWL. The system will
provide pre-test predictions for the survivability/vulnerability, S/V, of buried structures in
nuclear blast simulations [4]. Currently pre-test predictions are based on finite-element
analysis of blast effects on structural and material models and interpretation of the results
by experts. Through knowledge elicitation it was apparent that the experts base
judgements on previous experience with similar and dissimilar situations, or cases. The

prototype is being built following a case-based reasoning design which provides for the
definition, storage, retrieval, and processing of previous experience and will provide for
automated S/V analysis.

A case-base is being assembled which consists of actual test data and the experiential
factors which, went into the analysis and solutions to the previous situations. A goal of
the effort is a more in-depth case-base for proper utilization of the capability of case-
based reasoning. Hypothetical cases will be produced through simulations of test
situations which include variances to the following attributes: structure dimensions,
material models, and the blast description. These hypothetical cases require that actual
expert analyses be included within the case.

Another important aspect of this case-based reasoning system is that the CBR
approach will provide the system with the ability to learn about new situations. Learning
is defined in our prototype as the storage of a new situation along with the solution or
analysis that has been provided through reasoning on past cases. A new case can be
stored, after expert confirmation, through the definition strategy developed in the
prototype. Cases will be indexed through structure type, blast type, and materials model
type.

The very important aspect of reminding, or retrieval, in a CBR system will be
accomplished in the SURVER system through two distinct methods. The cases will be
indexed according to their representative attributes and an intersection method for
retrieval will be used to retrieve the cases which best fit the present situation. As a
refinement to the set of initial cases retrieved the system will perform a generalization

function to provide retrieval through matching on not only specifics but also
generalizations of values. This method is referred to as hierarchical domain-space
retrieval. In this method a match can be provided on a minimum of information about
the new situation through pruning of the search space via hierarchical representation.
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The system is being developed following an object-oriented, frame-based approach on
a Zenith-248 using the development system GoldWorks tm from Gold Hill Computers.

Case-Based Reasoning and Space Applications

The following is an abbreviated list of possible applications of Case-Based Reasoning

for the space domain. This list was developed through an examination of possible areas
which depend on human experience for control and interaction [1a].

A. Satellite system and component survivability/vulnerability modeling and

analysis
- Fault diagnosis satellite, station, and ground-based subsystems

B° Communications support through knowledge-based operator support
- Satellite control

- Ground-based systems, positioning
- Signal interpretation

C° Automation of prior astronaut experience in critical situations:
- EVA's
- Situation assessment
- Attitude control

- Diagnostics and Repair

D° Command and control functions

- Both onboard and ground-based

E° Weather forecasting
- Critical decisions for mission control

- Feature extraction and analysis

F° Training
- Tutorial assistance for C 3 applications

- Ground support, etc.

G° Remote operations:
- Decision processes for landers and robotic appendage control

- Capture and retrieval operations
- Space Station remote support facilities

H. Launch monitoring

I° Modeling and Simulation
- Component design and testing
- System and operations

Summary

It is apparent that knowledge and reasoning are products of expert experience. Case-
Based Reasoning provides an appropriate representation strategy, methods for reminding
or retrieval of prior experiences, and the techniques for manipulating and reasoning about

prior cases. The SURVER project for AFWL is one example of the application of these
techniques to real world problems and analyses. Similar systems can be built for the
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space program to provide for the ever expanding needs for automation and integrity
assurance.
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ABSTRACT

Extremely large knowledge sources and efficient knowledge access characterizing future
real-life AI applications represent crucial requirements for on-board AI systems due to obvious

computer time and storage constraints on spacecraft.
In this paper a type of knowledge representation and corresponding reasoning mechanism is

proposed which is particularly suited for the efficient processing of such large knowledge bases

in expert systems.

1. INTRODUCTION

Many of today's AI systems are still experimental prototypes aiming at feasibility demonstra-
tions. These systems normally have relatively limited knowledge bases, since research so far has
had its focus more on the conceptual side of reasoning than on the treatment of large knowledge
sources. However, it is becoming increasingly clear that for AI to display its full potential power

not only the reasoning capacity of the human mind needs to be imitated, but also the fact that
it has enormous knowledge sources at its disposal and is able to draw on this knowledge with

extreme efficiency. Given the computer time and space constraints on spacecraft, this aspect
becomes particularly crucial for on-board applications of AI and might necessitate, to a certain

degree, a re-assessment of today's state of the art which has been mainly dictated by the endeav-
our to capture the reasoning aspect of intelligence only, regardless of the software overhead,

high memory space demands, low performance, garbage collection problems etc. this often
entailed.

In this paper a type of knowledge representation and corresponding reasoning mechanism is
thus outlined, which is particularly suited for the processing of large knowledge bases in expert

systems, maintaining the usual functionality of expert systems at the same time.

2. CONNECTIVITY IN THE BRAIN

Looking at the brain as the great example for processing speed and compactness of know-

ledge storage one notices, among other features :

fl ) extremely high performance in classification processes, i.e. fast mapping of large data sets
on discrete descriptors (such as optical or acoustical data on corresponding objects or
words)

f2) relatively low performance in inference processes, i.e. comparatively slow generation of

(long) chains of logically connected elementary operations (such as in doing maths prob-
lems step by step, where each step is usually solved or instantiated by a classification process

"learned by heart", such as performing the simple mapping 2x2 = 4)

f3 ) extremely efficient prompting of associated information (often quite unsolicited)

f4) tolerance to incomplete or locally erroneous information in the classification process,
such as in the identification of partially obliterated images, correction of misspelt words
etc.
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These features are supplemented by some knowledge about the brain's structure, such as :

sz) incoming continuous data (e.g. optical or acoustical) is spatially discretisized prior to
further processing by resonant excitation of dedicated sensor cells (e.g. in eyes or ears)

s_) these sensor cells are connected by nerve fibres to neurons, which obviously act as logical

gates to the discretisized data, being themselves interconnected by an intricate fibre
structure

s3 ) which also seems to allow for lateral inhibition, i.e. the weakening of the sensory input

of neurons by neighbouring neurons with stronger sensory input, apparently supporting

the generation of excitation maxima in the neuronal network.

An extremely simplified model inferred from these features could consist for example of a

set O = [o= .... On] of "observation cells" oj and a set D = [d I ,. •, dn] of "descriptor neurons"
dK connected by a "connective structure" composed of nerve fibres as shown in Figure 1.
The descriptor neurons represent particular objects, situations, diagnoses etc. characterized
by sets of discrete features.

Each observation cell represents one of these features and is only excited if this feature is

found in the data stream (such as a particular frequency in the case of incoming acoustic data).
The connective structure is such that fibres link each descriptor neuron to all observation cells

characterizing it. Conversely, this means that each observation cell oj is linked to all descriptor
neurons which contain oj as a feature.

After the "local" classification of incoming data by the excitation of discrete observation
cells (structural feature sl ) this excitation is thus passed on via the nerve fibres (feature s. ) in

• ;8

such a way that each descriptor neuron, whose characteristic features are contained m the
incoming data, receives some input• Maximum input obviously is received by the neuron rep-

resenting the situation, object etc. generating the incoming data, and feature s3 given above
could be viewed as a clue to the fact that the "global" classification of the incoming data is
indeed achieved by some comparison of the input intensity of the descriptor neurons.
This could, for example, be achieved by setting the threshhold controlling the "firing" of

a neuron dK so that it only fires if input has come from the full set of all the observation cells

Okj connected to it.

Given the functionality of the human nervous tissue, the local data classification, message

transmission from observation cells to descriptor neurons and particularly the checking of
the firing conditions of each neuron could be performed concurrently, thus leading to an

extremely efficient classification process (feature fl )"

Allowing for secondary, lower thresholds permits the firing of neurons having received input
from less than all the observation cells linked to them, thus generating associations, i.e. situations

or objects sharing features with the primary data source, in an equally efficient manner (feature

f3 )" Moreover, lower threshholds obviously could also be used for approximate classifications
based on some maximum input evaluation in the case of incomplete or locally erroneous data

(feature f, ).

Inference processes could be realized by supplementing the set O of observation cells by

additional cells d'K which are not excited by incoming data, but by the firing of descriptor ceils,
thus providing additional input to the next cycle of mapping observations on descriptors.

The fact that such inference cycles have to proceed in series could be one reason for the relatively

low performance in inference processing, as mentioned in f=.

416



3. CONNECTION MATRICES IN EXPERT SYSTEMS

In the terminology of expert systems, where one distinguishes between a knowledge base and
an inference engine, the main feature of the brain model described in the previous chapter and

illustrated in Figure 1, is the fact that its knowledge base is mainly embodied in the connective
structure between observations and descriptors, the appropriate knowledge representation

being given by "connection matrices"

.1 if observation j is connected to the descriptor k (1)Mkj = otherwise

As implied by the model described in Chapter 2, data processing using this knowledge repre-

sentation requires a prior local classification in which slots representing observations oj of
individual features or symptoms such as "temperature higher than nominal value" or "valve

V1 is open" etc. are instantiated by values oj between 0 and 1 describing the degree to which
the local classification holds (in many cases a two-valued classification : oj = 0 or 1, however,

is sufficient) providing an input ikj (O or oj) to the kth descriptor via the connective structure
Mkj :

ikj = MkjOOj for eachj. (2)

These inputs are collected by accumulation functions F k to provide an integrated input
intensity :

Ik = Fk (ikl,..,ikn), (3)

a possible example of Fk being

Fk = 7-- akj ikj, akj = 1 (4)

J

=kj describing the "implication strength" of oj with respect to dk

The global classification is then performed by identifying the descriptors dk for which Ik = 1
holds. If none can be found, as in the case of incomplete or erroneous information, this thresh-

hold value Io = 1 is reduced to yield approximate classifications as described in chapter 2.
(Details of the treatment of uncertainty on which this reasoning mechanism is based can be
found e.g., in Ref. 1).

The ability to ask the user for missing data in case of incomplete information which is dis-

played by many expert systems, can be achieved by simply looking up the observations oj
connected to the approximate classifications dk via Mkj and asking for them. This method
can also be used to accelerate the classification process by first generating approximate classi-

fications based on just a few randomly picked observations oj # 0 and then automatically
collecting the remaining evidence for just those classifications, a process which might be called
"attention focussing on clues".

Knowledge processing can be further accelerated by parallel processing, dedicating a proces-

sor to each function Fk or at least to subsets of functions Fk,

Consecutive inferences are realized according to the method outlined in chapter 2.

4. ON-BOARD IMPLEMENTATIONS

The main functions of on-board AI systems will be failure diagnosis and recovery, MMI sup-

port (mainly by natural language understanding systems) and planning. AI systems for the first

application fall into the category of typical expert systems, these being roughly characterized
by their functionality as knowledge-based classification systems, as opposed to the somewhat
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different functionality of natural language understanding and planning systems, although they

also encompass classification processes.

Thus connection matrices can be used particularly for the first type of application but also

for the other two as far as classification is involved.

Obviously knowledge bases using this type of knowledge representation require much less

computer storage and knowledge processing time (even more so if parallel processing is em-
ployed) than in the case of systems based on representations which imply symbolic knowledge

representation, symbol matching techniques, symbol handling overhead, special implementa-

tion languages and garbage collection problems.
For example, whereas the realization of a connection matrix embodying the knowledge to

classify, say, 400 sensor readings into 20.000 different malfunctions roughly requires 1 Mbyte
of computer storage which is still quite feasible for on-board implementation, the realization of

a corresponding rule-based system with tens of thousands of rules would pose a formidable
problem concerning the required memory and processing time.

Moreover, a rule based system of this size could also pose a formidable problem as far as the

development, verification, validation and maintenance of the knowledge-base is concerned,
whereas the simple structure of connection matrices and the underlying reasoning processes

greatly enhance the transparency of the system, the development of the knowledge base simply
being effected by an enumeration of observations and states and an identification of their
interconnections. Methods to automize this process on the basis of FMECA (Failure Mode

Effect and Criticality Analysis) and system simulations are presently being investigated.

5. CONCLUSIONS

On the basis of an assessment of some of the features of the human brain which seem to

pertain to its extremely efficient utilization of very large knowlege sources a type of know-
ledge representation and corresponding inference mechanism for expert systems has been

presented which is particularly suited for the processing of large knowledge bases at compara-
tively low storage and computer time requirements.

Whereas expert systems of this type are conceptually similar to systems involving the treat-
ment of uncertainty, they are representationally different in that the effort in describing the

connectivity between observations and descriptors has been reduced to a minimum by re-
placing symbolic descriptions by simple elements of connection matrices thus eliminating high
storage and computer time demands typical of systems characterized by symbolic knowledge

representation, symbol matching techniques, symbol management overhead, special implemen-
tation languages and garbage collection problems.
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RB-ARD: A PROOF OF CONCEPT RULE-BASED ABORT

Richard Smith

John Marinuzzi

ABSTRACT

The Abort Region Determinator (ARD) is a console program in

the space shuttle mission control center. During shuttle ascent

the Flight Dynamics Officer (FDO) uses the ARD to determine the

possible abort modes and make abort calls for the crew. The

goal of the RB-ARD project was to test the concept of providing
an onboard ARD for the shuttle or an automated ARD for the

mission control center (MCC). This goal required a knowledge

system to capture the expertise of the "man in the loop". A

proof of concept rule-based system was developed on an LMI

Lambda computer using PICON, a knowledge-based system shell.

Knowledge, derived from documented flight rules and ARD

operation procedures, was coded in PICON rules. These rules, in

conjunction with modules of conventional code, enable the RB-ARD

to carry out key parts of the ARD task. Current capabilities of
the RB-ARD include: continuous updating of the available abort

mode, recognition of a limited number of main engine faults and
recommendation of safing actions. Two types of main engine

faults are recognized, Pc shift and oxidizer turbine discharge

temperature anomalies. Safing actions recommended by the RB-ARD
concern the SSME limit shutdown system and powerdown of the SSME

Ac buses.
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ABSTRACT

We provide an overview of the knowledge acquisition

component of the Bauhaus [i], a prototype CASE workstation for

the development of domain-specific automatic programming systems

(D-SAPS). D-SAPS use domain knowledge in the refinement of a

description of a application program into a compilable

implementation [2]. Our approach to the construction of D-SAPS

is to automate the process of refining a description of a

program, expressed in an object-oriented domain language, into a

configuration of software parts that implement the behavior of

the domain objects.

We view this process of software parts composition as a

problem-solving task. By structuring a problem-solving task so

that the types of knowledge required are made explicit, the

acquisition of knowledge useful in performing the task can be

made simpler, and the resulting knowledge base becomes easier to

maintain [5]. The Bauhaus incorporates a problem-solving

architecture based on the RIME [7] and SOAR [3] systems that

provides such a structure. In this architecture, the task of

refining an initial program description is represented as a

goal. A goal determines a problem space and an initial state in

that space. A problem space is a set of operators that are

useful in the satisfaction of a given goal. An operator

transforms a state in the problem space into a new state, or

creates a subgoal, or recognizes when a given goal is satisfied.

The goal of refining the initial program description is

satisfied when the system has composed a set of software parts

to form an implementation of the program.

Operators are applied by the system by iterating through

three stages:

i. Propose the set of operators that can be applied to the

current state;

2. Choose an operator from the set to apply to the current

State; and

3. A_p_ the operator, generating the next current state.

User intervention in the choice of an operator is requested when

the system reaches an impasse: when no operator applies, then

the system is unable to express a preference for an operator, or

when the system's preferences are inconsistent. The types of

user intervention that can occur correspond to the types of

knowledge needed by the system to avoid similar impasses in the

future. The system generalizes from observed instances of user

intervention to create new operators and preferences. In this

manner, the programming knowledge of the system is automatically
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increased through its use as a software development tool by

experienced application developers. This form of knowledge

acquisition through the observation of user intervention in the

design process allows us to characterize the Bauhaus as a

learninq system[4], similar to the VEXED VLSI design system [6].

Implementation of the Bauhaus is currently underway using ART

running on a Symbolics Lisp machine under the Genera 7.1

environment, integrated with the Symbolics Ada programming

environment.
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ABSTRACT

We present an automatic program generator which creates

Prolog programs from input/output specifications. The generator

takes as input descriptions of the input and output data types,

a set of tests, a set of transformations and the input/out

relation. We use abstract data types as models for our data.

The tests, the transformations and the input/out relation are

also specified by equations.

The program generator creates a Prolog program which takes

as input a data item of the input data type, iteml, and outputs

a data item, item2, of the output data type such that the

input/out relation is satisfied by the items iteml and item2.

In building the program the generator uses only the tests and

the predicates given as input. The program generator was

written in Prolog.

We implemented descriptions of the data types array, list,

natural number and record. Our generator was able to generate

correct Prolog programs for sorting lists with and without

eliminating duplicate elements. We are currently working on

developing heuristics for handling arrays and records.

We present a method for validating the data type

descriptions based term rewriting systems and first order logic.

Since the specifications of the data types can be quite involved

we are building a natural language interface to our system.

This way the user can enter commands in the English language and

use the predefined data types. At the same time the

sophisicated user can define his/her own data types.

We will also discuss the heuristics used by the automatic

program generator in building Prolog programs. We will show the

advantages and the disadvantages of writing automatic program

generators in Prolog. We investigate problems associated with

the use of term rewriting systems and of the theorem prover

ITP in validating data types and in proving the generated

programs correct.

We relate our work to the approaches used by Prywes, Manna

and Dershowits in building automatic program generators.

425
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ABSTRACT Acquisition and judicious incorporation of

programming knowledge into the programming environment

is essential to support development of correct programs

and thereby enhance the programmer productivity. A pro-

gram may be viewed as an outcome of interaction between

a programmer and his/her programming environment. The

interaction may be supported at the program generation

level, program design level, or at the program specifi-

cation level. The higher is the l_vel of interaction

supported the greater is the knowledge base required to

support this interaction, and greater are the program-

ming skills required of the programmer. Knowledge ac-

quisition techniques used range from formal-based on

mathematical properties of programs to empirical, and

from generic to application domain specific. In this

paper, we review the recent developments in this area

and suggest future directions.

I. INTRODUCTION

Knowledge based programming environments have an impor-

tant role to play in facilitating the development of correct pro-

grams. Such environments can provide for rapid development of

correct programs by guiding the programmer through the maize of

design decisions and implementation alternatives, and automating

low level programming tasks. Developments in this area may lead

ultimately to Automatic Programming Systems.

The goal of automatic programming is to automate all the

phases of the program development - namely, program specifica-

tion, design, and implementation. There are two approaches to

realization of an Automatic Programming System. In one, the sys-

tem proceeds with given correct specification of the program and

through application of an appropriate sequence of valid transfor-

mations transforms the specification into a program. The program

specification may be assumed to have been provided by the pro-

grammer or developed by the programmer through interactions with

the system. As opposed to this, the other approach is more of an

evolutionary approach, and is based on extending the automation

of programming tasks from lower levels to higher levels. In ei-

ther case, acquisition and codification of programming knowledge

is an essential task. It has been observed [3] that large body of

programming knowledge exists and that codification of this

knowledge remains most limiting factor to ultimate development of

automatic programming systems.

Knowledge acquisition and incorporation for an evolving
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discipline is more problematic than for a mature one. One finds

that programming is variously described as art, craft, and sci-

ence. In the sense that parts of programming process are at

various stages of evolution each of the terms may reasonably be

used to describe the programming process. The evolving formali-

zation of programming process by Computer Scientists and the the

proven and empirical techniques of programming craft used by the

practitioners must be used as the sources of programming

knowledge and the knowledge from these source be suitable in-

tegrated to realize the gains in automation of programming pro-

cess.

To further complicate the matter, not only the knowledge

bases relevant to various phases of program development need to

be integrated, but knowledge bases that address the development

of correct programs must be integrated with one that addresses

the efficiency concerns in a manner that changes in the one has

minimal impact on the other [6]. Often specialization of a pro-

gramming system to a specific application opens up opportunities

for improving the programming process for that application by

judicious incorporation of domain specific knowledge [I]. An im-

portant aspect of any system is to allow for acquisition and in-

tegration of additional knowledge and refinement of existing

knowledge during its use by the programmer.

2. PROGRAMMING KNOWLEDGE

Fundamental research in Computer Science deals with for-

mal approaches to understanding of programs and the programming

process. The knowledge so gained may be used to develop explora-

tory techniques for program development. Those techniques that

gain acceptance and wide usage then become proven techniques for

program development. There are a number of issues that require

more empirical approaches for its resolution. Such issues relate

to reliability, maintainability, efficiency, human interfaces,
etc.

There are two views in relation to approaches to automat-

ic program development. One assumes that formal approaches will

ultimately permit automatic development of correct programs. The

other view accepts that writing correct programs is hard, and

therefore it is accepted that programs may contain errors and

that through iterative process of error detection and correction

one arrives at a program in which one has high degree of confi-

dence that it is correct. It may be noted that these two ap-

proaches complement each other in the sense that formal ap-

proaches are necessary if we are to build correct programs for

critical applications, and at the same time empirical approaches

are necessary if we are to develop any worthwhile program of rea-

sonably large size in timely fashion.

Formal Approaches:

Formal approaches to the understanding of the programs

and the programming process demands high degree of profficiency
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in the creative application of mathematical skills. Formal ap-

proaches do not always yield results that may be used to develop

practical techniques. Often techniques based on formal ap-

proaches are time consuming particularly when it is to be carried

out manually. Further, since these techniques require special-

ized skills, they are subject to subtle and hence hard to detect

errors. For example, it may be very difficult to detect error in

an erroneous proof of program correctness. None the less

knowledge gained from formal inquiries have yielded many useful
results.

Laws of programming [5] and formal program design methods

[4] are examples of formal approaches to the understanding of

programs and the programming process, respectively. It is inves-

tigations of these types that will allow us to resolve the ques-

tions of program equivalence by suitable representation of pro-

grams in a canonical form. And allow development of programs

through better understanding of issues that are important at

various stages of program design and to the development of

languages with suitable degrees of freedom to represent a program

through various stages of development.

Exploratory approaches to program development are typi-

cally based on some break through in the formal understanding of

programs and the programming process. Formal representation of

program design information in Programmer's Apprentice represents

an exploratory technique [7] for use in semi-automatic program

development. Acceptance and wide usage of these techniques leads

to proven techniques which then become common knowledge.

Common Knowledge:

Vast body of programming knowledge exists in the form of

textbooks and reference books, especially related to algorithms,

data structures, and structured programming. The impact of the

developments in these areas from formal inquiries in 50's and

60's is now visible in development of programming languages and

programmer training. While programming language can not enforce

structured programming it can and have facilitated development of

structured programs by providing suitable constructs and support

for abstract data types. It is believed that advances in pro-

gramming will require development of languages that support the
major paradigms of their user communities [2].

The paradigms for algorithm development, such as divide-

and-conquer, provide a systematic approach to development of al-

gorithmic solution to a problem. A unified view of application of

this paradigm for the development of algorithms and its implemen-

tations for a class of problems, say sorting, is needed to extri-

cate the technique in details enough for the knowledge to be

represented in machine processable form [3,8]. To this end, one

can recognize that merge sort, quick sort, insertion sort, and

selection sort are examples of divide-and-conquer paradigm with

differences in the methods of partitioning of the problem and the

composition of the solution from the partial solutions. In addi-

tion, a number of paradigms need to be developed for the tech-
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niques of implementation to be suitably represented,

recursion-to-iteration transformation, etc.

such as

Empirical Approaches:

There are a number of issues of practical importance that

defy formal approaches and in fact may not be properly be sub-

jects of formal inquiry. For example, when do we stop testing a

program? A practical answer is when the resources allocated for

the testing have been exhausted. None the less, formal inquiries

on this questions have yielded results that are awfully inade-

quate. Other issues involve human interfaces, or measures of

complexity. It has been remarked that programming deals with

managing complexity. There are rules, based on psychological

studies, that say a human can deal with seven things at a time. A

number of software methodologies use this as a guide to help

manage complexity. How large a problem should be for a technique

to more efficient than a simpler one? A number of implementation

issues have this characteristics. In such cases it much better

to arrive at a resolution based on interaction with the user.

The studies involving observations of expert programmer at work

also yield useful information involving 'good' programming prac-
tices [9].

Acquisition and Incorporation:

The approach used for knowledge acquisition and incor-

poration is important. Knowledge bases that addresses specific

aspects of programming must be integrated in a manner that allows

common interface without making it more complex to use or update.

The knowledge must be represented so that its refinement and ad-

dition can be accommodated gracefully. Lastly, means must be pro-

vided so that user may add and modify the programming knowledge.

3. CONCLUSION

For the evolving discipline of programming, acquisition

of programming knowledge is a difficult issue. Common knowledge

results from the acceptance of proven techniques based on results

of formal inquiries into the nature of the programming process.

This is a rather slow process. In addition, the vast body of

common knowledge needs to explicated to the low enough level of

details for it to be represented in the machine processable

form. It is felt that this currently impediment to the progress

of automatic programming. Importance of formal approaches can

not be overestimated since its contributions lead to quantum jump
in the state of the art.

REFERENCES

[I] D. Barstow, "Domain-Specific Automatic Programming,"

IEEE-TSE, 11.11(1985)1321-1336.

[2] R.W. Floyd, "The Paradigms of Programming," Communications

430



[3]

[4]

[51

[6]

[7]

[8]

[9]

of ACM, 22.8(1979) 455-460.

C. Green and D. Barstow, "On Program Synthesis Knowledge,"

Artificial Intelligence, 10(1978) 241-279.

C. A. R. Hoare, "An Overview of Some Formal Methods for

Program Design," COMPUTER, 20.9(1987) 85-91.

C. A. R. Hoare, I. J. Hayes, et.al, "Laws of Programming,"

CACM, 30.8 (1987 672-686.

E. Kant, "Efficiency in Program Synthesis" UMI Research

Press, 1981.

C. Rich, "A Formal Representation For Plans In The

Programmer's Apprentice," Proc. of Seventh International

Conference on Artificial Intelligence, 1981.

D. R. Smith, "Top-Down Synthesis of Divide-and-Conquer

Algorithms," Artificial Intelligence, 27(1985) 43-96.

E. Soloway and K. Ehrlich, "Empirical Studies of Programming

Knowledge," IEEE Trans. of Software Engineering, 10.5(1984)
595-609.

431



APPLICATION OF ARTIFICIAL INTELLIGENCE TO

IMPULSIVE ORBITAL TRANSFERS

by

Rowland E. Burns

N88-16439

NASA

Marshall Space Flight Center
Huntsville, AL

ABSTRACT

A generalized technique for the numerical solution of any given
class of problems is presented. The technique requires the analytic
(or numerical) solution of every applicable equation for all variables

which appear in the problem. Conditional blocks are employed to

rapidly expand the set of known variables from a minimum of input.
The method is illustrated via the use of the Hohmann transfer problem
from orbital mechanics.

INTRODUCTION

Although many papers deal with the use of rule based systems,
few have applied that logic to strictly mathematical systems.

Mathematics programs in artificial intelligence tend to provide the

solution to a very specific problem such as evaluation of an integral.

The techniques presented here are for a very different class of

problem. The user requires the numerical solution to an extended

problem that could involve any number of equations from differing
fields. While some of these equations are critical, others are

inapplicable to the specific problem at hand; some of the critical

equations are usable only after other equations are applied in a

specific order. The non-expert cannot be expected to know all of

these equations, the order in which they must be employed, or even
whether or not there is enough information at hand to solve the

assigned problem. This paper suggests a method to eliminate such

difficulties. The method has been reported in one other paper

(Ref. i); that paper was discovered after the present effort was
well under way.

THE PROGRAM LOGIC

Virtually every (numerical) computer program can be regarded as a
map from mandatory inputs to invariable outputs. The goal of this

program is to relax this one-to-one map and provide a complete set of

outputs from any sufficient set of inputs. To begin the process, we

initially establish the value of all constants and then set the values
of all variables to nil.

The heart of the technique is to solve every potentially applicable

equation for every variable which occurs in that equation. This should

be done analytically, if possible, but we allow for the possibility that

iteration, numerical integration, etc., may be required. If, for

example, an equation such as

W-FI(X,Y,Z)

is applicable then we would also solve for
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and

X-F2(W,Y,Z),

Y-F3(W,X,Z),

Z-F4(W,X,Y).

Then, for each of these equations we can write statements (LISP is
convenient) such as

(COND ((AND X Y Z (NOT W))

(COND'('(AND W Y Z (NOT X))

etc. The first condition would be met if and only if X and Y and Z

are not nil while W is nil. The second would be met if and only if W
and Y and z are not nil while X is nil. Note that, in non-trivial

systems, we may have several equations that yield W as a consequent

from varying antecedents so that a specific condition statement for W

may never be fulfilled. Once W is produced from any equation, it then

becomes available to help produce, say, X or Y or Z from these

equations. A rapidly increasing base of known variables results

from this approach.

After a condition block has been satisfied the body of the block is

filled with various tools that govern the operation of the program.

MoSt important is the evaluation of the consequent which is then
added to the accumulating knowledge base; this also guarantees that

this block will never again be activated (nor will any other block

with the same consequent). All physical units are "conditioned", if

necessary, within the block (to allow the user to work in any units

that are convenient). An array value is stored to record the order in

which a given block was accessed. (This provides a "derivation" of the

answer.) Another important function is to set an event-flag to indicate

that a new variable has been evaluated. At the beginning of the
condition block subroutine, the event-flag is set to nil and, if a new

variable is added to the store of known values, the flag is set non-nil.

At the end of the condition block subroutine, a non-nil event-flag

forces subroutine looping until no new variables are evaluated or until
the program terminates. If there are no new values and no termination,

further input is requested. (Termination occurs when all variables
have non-nil values.)

The mechanics of presenting the flow of information to the user

can be handled in many ways. One technique which has proven to be

valuable is to present the user with two dynamic menus. One of the

menus lists the variables which are presently known (and their
numerical values) while the other gives a mouse-sensitive list of

variables that have yet to be specified. The "known" menu grows at a

very rapid pace because one input often yields many new variable
values. The variables which are known, and others derived from them,

are removed from the "as yet unspecified" listing on that dynamic menu.

THE HOHMANN TRANSFER

Although page limitiations preclude non-trivial examples, the
classic Hohmann transfer is illustrative. This maneuver involves a

rocket vehicle leaving a circular orbit by adding an impulsive velocity

along the tangent to the orbit, coasting on an ellipse to a higher

circular orbit and entering into that orbit via a second tangential

impulse.

For circular orbits, if we define the gravitational parameter as
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, the distance from the attracting primary as R, the magnitude of

the velocity vector as V, and if we use subscripts o and f to
indicate the initial and final orbits then we have, from the two body

problem (Re,. 2),

Vo- J_/Ro 11)

Vf- y_/Rf (2)

From these come immediately

l

so- _/vo

Rf- M/V'

(3)

(4)

The velocity which must be gained at the two end points of the transfer

ellipse are given by

_vo- J_2/Ro-1/A) -Vo (5)

Vf- 2/Rf-1/A) -Vf (6)

where "A" is the semi-major axis given by

A-(RO+Rf)/2

From (5), (6), and (7) come the relationships

Vo- _H (2/Ro-I/A)

RO- 2ARo/[A(Vo+ _Vo)

(7)

- dvo (8)

+ _] (9)

A- _RO/[RO(VO+ AVo) -2 _] (i0)

,/ ,Vf- _(2/Rf-I/A) - _Vf (ii)

Rf= 2ARf/[A(Vf+ AVf) + _ ] (12)

A- _Rf/[Rf(Vf+AVf) -2 _ ] (13)

The "total" velocity increase,

V- _Vo + _Vf

which rearranges to give

V , can be written as the simple sum

(14)
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_Vo- _V - ziVf (15)

Vf- _V - ziVo (16)

If we now introduce M as mass, then the final mass, Mf, is related to

the initial mass, Me , _V, and the rocket exhaust velocity, C, as

Mf-Mo*exp(- AV/C)

which yields the subsidiary relationships

(17)

Mo-Mf*exp(_V/C) (18)

V-C*Iog(Mo/Mf) (19)

C- _V/log(Mo/Mf) (20)

Re, Rf, Vo, Vf, A, Me, Mr, _V, _Vo, _Vf and C are thus

related by a total of twenty equations. Vo, for example, can come
from either equation (I) or equation (8) or from user input.

A may be generated from equation (7), equation (i0), equation (Ii)

or from input. The only Source for Me is from equation (15) o F via

input. Etc.

The user may now specify input variables in any order which is
convenient. The solution for all variables in all forms from the

applicable equations allows a free form input wherein any set of inputs

will necessary lead to the output of all unspecified variables.

It is also possible to aid the user by providing help in

determining which variables must still be specified to obtain a desired

result. By tracing the dependence of the output varlable on input

variables the user may well recognize a sub-set of inputs that can lead
to the required solution. This could allow a solution for smaller

problems without having to solve for all possible answers. Graphics

aids also have obvious applications.

It must be realized that the above set of equations is so extremely
limited that it is doubtful that the corresponding program would hold

any users interest for more than a very brief time. To expand to a
full design tool requires including options for elliptical

initial and target orbits, full three dimensional capability, equations

which relate the rocket mass to payload mass, propellant mass, and

structural mass, phasing infomation (Gauss' equation requires iteration

to isolate the eccentric anomoly), etc. These extensions are presently

under way at Marshall Space Flight Center and a useful program is

expected within about six months.

CONCLUSIONS

The foregoing has provided only a minimal outline of an important

concept in the field of artificial intelligence. Even so, the potential

uses of such a system are enormous.

It is apparent that the technique is not limited to mathematics

because, for example, it is possible to replace the condition blocks

which deal with equations with, for example, chemical synthesis

procedures. Once the elementary reactions are available it is possible

to begin synthesizing more and more exotic compounds using those
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building blocks. The system would indicate how to construct extremely
complex organic compounds beginning with the elements; help

screens could be productively employed to describe the exact laboratory
procedures to be followed as well as required equipment.

In another area, it is also possible to "computerize" entire text

books and produce programs that would be sold to students as a pony for

a given text. With such help it would be impossible to assign a problem
to the student which could not be solved using the equations that are

supposed to be at hand. The next step would be to combine several texts

in differing fields in order to cross-reference knowledge. One would

expect that equations and concepts which occur in different fields

could be used in unexpected and surprising ways; the end of such an
endeavor is not predicable.
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ABSTRACT

Control of on-orbit operation of spacecraft requires retention and

application of special purpose, often unique knowledge of equipment and

procedures. This information must be available for application in

controlling routine as well as critical operating conditions. Expert or

knowledge-based systems technology offers the capability of retaining this

valuable knowledge under a variety of conditions. Even current expert

systems (ES) have limitations however. A real-time, distributed intelligence

system is a highly complex, human-machine system where an artificially

intelligent component operates the system and the human manages it. Real-time

distributed expert systems (RTDES) permit a modular approach to a complex

application such as on-orbit spacecraft support. One aspect of a

human-machine system that lends itself to the application of RTDES is the

function of satellite/mission controllers; the next logical step toward

creation of truly autonomous spacecraft systems. This system and

application is described in this paper.

INTRODUCTION

Numerous complex and sophisticated human-machine systems exist which are

beyond the scope and capability of current applications of artificial

intelligence (AI) technology, yet these systems could significantly benefit

from the application of some form of machine intelligence. This potential

forms the basis for the application of AI and ES technology to real-time

problems and distributed problem solving in development of RTDES. No one of

the domains (real-time applications, distributed AI and expert systems) are

sufficient for future autonomous systems as independent entities. One

approach which embraces these domains in system development mimics the

real-time problem solving ability of a human operator, using real-time

paradigms in a heuristic structure.

Distributed AI is the technique by which several physically or logically

separated AI programs cooperate to achieve a system-wide goal [4].

Distributing the decision-making AI programs in a real-time application has

the potential to achieve the following benefits:

i. Allow autonomous operation of field units

2. Greatly enhance system fault tolerance

3. Allow modular increases in system capability
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4. Significantly decrease communications required between field units

and a central decision maker.

The application of a distributed intelligence system provides a transition

from totally manual to totally automated systems; a hybrid system of sorts.

DIFFERENT METHODOLOGY

The methodology and structure used to create autonomously operating

individual AI programs in a nondistributed environment differs from the

methodology used to produce AI programs that have to interface with one

another. A decision-making program operating in a nondistributed environment

is usually structured to achieve a specific goal or set of goals using a

limited number of plans to reach these goals. These plans operate in

response to input events and actions occurring in the environment. AI

programs in a distributed environment dynamically modify their goals and

plans in response to decisions made by other AI programs in the system [7].

In a distributed AI system, decisions made by each AI program (which

could be considered a "module") depend on decisions made and actions taken by

the other modules in the system. Both concurrent and non-concurrent events

affect other events. Each AI program cannot have a knowledge base that

provides for all combinations of occurrences that might happen system-wide.

Each individual intelligent module must have the capability to dynamically

alter its course of action based upon inputs from other modules. Each

intelligent module must also have some degree of knowledge regarding the

types of objects and events (i.e., new information) by the other modules. A

critical issue yet to be solved for distributed AI is coordination of

distributed AI modules.

Perhaps the most important feature of having AI modules reside within

the individual entities (or sites) is the ability to intelligently determine

what information should be transmitted to a central control center. If site

intelligence were not available, entire streams of data would be transmitted

each time new information was sensed at the individual sites. This

selective information is shown as compressed data in Figure i. The local

intelligent sites are "intelligent" only in terms of local decision-making,

and do not possess any mission or system strategies. Figure 2 depicts a

distributed

distributed

performance.

C_PRESSEO SITE | _ C(_;_'_ESSEO MIS.,*.K_I

STATUS ANO _ |-,_---- STRA_GY ANO STA'fUS DATASTRATEGY OATA 1 (S_rmtegy ,dentlllere)

j_/L/OC AL_ _l_b( SYSTEM DECiSiONS)

_ T SITES .m.-_

Figure I, Centralized Control Structure

AI adaptation of the centralized control scenario. This

architecture places the greatest emphasis upon mission

Figure 2. Distributed AI Control Structure
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It is clear that diagnostic problems tend to make good applications of

ES techniques [5]. This is because many diagnostic problems that are fully

understood cannot be written algorithmically. For example, if the analysis

is limited only to single component failures (as in even the simplest

spacecraft system), there are still too many permutations for all cases to be

deciphered explicitly. This combinatorial explosion is avoided in expert

systems since the search tree is built at execution time and explores only

the most promising branches.

SPACECRAFT OPERATION AND CONTROL

While an expert system can be used to consolidate a number of functions

that analyze and monitor data during spacecraft passes or normal on-orbit

operation, inherent limitations still remain. These limitations form the

basis for the application of different structures and methodologies.

On-orbit spacecraft operation, including fault diagnosis, requires

special purpose knowledge. This body of knowledge is acquired over decades,

and is one of the most valuable resources of any large-scale program [6].

Unfortunately, this knowledge is most often lost with human attrition. ES

technology offers the capability of retaining this knowledge, and in addition

performing critical tasks faster and more reliably than humans, such as

battery reconditioning, launch operations and resolution of anomalies.

The facilities and methods established for satellite command and control

are quite basic and reliable. Raw data (telemetry) acquired via the assigned

or scheduled tracking station is transmitted to a control center for

processing. The "housekeeping" data is processed within a multisatellite

data processing (DP) hardware and software complex for ultimate display to a

spacecraft controller console. A variety of interfaces are available (e.g.,

CRTs, computer graphics, strip chart recorders, etc.). The "payload" data is

processed specifically according to mission user requirements and

disseminated appropriately. Processing of this data is usually affected

off-line and incorporates the necessary corrections due to attitude and

orbital influences [i, 3]. Alarm conditions triggered from digital and

analog parameters exceeding pre-defined limits usually invoke a manual

response.

A human-machine system such as satellite operations is an outstanding

candidate for an RTDES application, based upon the telemetry, tracking and

command functions described above. The advantages of this application

include autonomous site operation, a high degree of fault tolerance, the

ability to increase system capability modularly, and a decrease in real-time

communications (due in part to data compression) between a central unit and

local sites. The incorporation of one or more AI modules into such a system

could enhance operational success because the controller would be freed from

his/her time-sharing responsibilities, and thus have more time available to

deal with a variety of more difficult, complex problems which might develop.

This implementation process is evolutionary and iterative in nature, and

could be a step towards the eventual elimination of a satellite control

center.

It has been postulated that the definition of real-time processing is

application dependent 12, 4]. Real-time in a satellite control application
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might be considered to be a data processing response on the order of_'hundreds

of milliseconds. It is this sort of high-level real-time application that

must be addressed.

PERFORMANCE EVALUATION

The overall effect of incorporating one or more AI modules into a

complex system can enhance system performance. One effect which can cause

this result is the application of AI modules which makes the human's job

easier.

Design of RTDES by incorporating artificially intelligent components

into portions of a human-machine system does not guarantee enhanced system

performance with the same or less input. The humans who remain involved with

the resulting RTDES must be adaptable to work with the new creation. There

are also a number of other compatibility considerations which must be

addressed in the design phase, all beyond the scope of this paper.

Another consideration is that of cost effectiveness. It may prove

difficult or impossible to isolate which subtasks can be supported by AI

modules. This seems likely since it can be difficult to extract valid data

on controllers regard for each Subtask as part of the overall task. This

difficulty arises because some subtasks are not independent but highly

interrelated with other subtasks, and cannot be analyzed separately [7].

Overall communications requirements in RTDES are greater because system

strategy decisions made by each site or unit must be relayed and coordinated

with all other units.

CONCLUSION

AlthQugh significant progress has been made in artificial intelligence

and expert systems technology_ workable methods have not yet been developed

for sophisticated real-time distributed Al-based systems.

The use of artificially intelligent local modules in a complex,

distributed_ real-time system offer the potential for significantly reducing

the communications required to and from a centralized decision-maker, as

shown in Figure 2. These modules can also provide a high degree of fault

tolerance [2, 4, 7]. The associated benefits as a result of this application

were outlined in the introduction and mentioned throughout.

The AI technology required to perform the communications, Coordination,

and control between the distributed AI modules is in the early research stage

and many researchers in distributed AI are not addressing the real-time

nature of systems [4] such as presented in the satellite control problem.

Technology transfer from various AI disciplines will be required as a base

for developing methods to implement real-time distributed AI. There is a

need for these applications in a variety of disciplines.

The design of RTDES and similar types of systems are in the

developmental stage. A number of relevent research issues exist which should

be addressed in the immediate future:
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i. Now that AI and expert systems are maturing, primary emphasis should

be placed upon real-time implementations.

2. Further investigation is needed into the problem of communication

and coordination among distributed AI programs.

3. Similarly, investigation into the criteria used to intelligently
determine what information should be transmitted to other AI

components needs to occur.

4. Research is necessary into the isolation of subtasks to be supported

by AI components and subsequent interrelationships.

ACKNO_S

The author wishes to acknowledge that the concept and much of the

research for this paper was performed while working for the Jet Propulsion

Laboratory in Pasadena, CA, while involved in the development and integration

of the Space Flight Operations Center project.

[1]

[2]

[3]

C4]

[5]

[6]

[7]

REFERENCES

Barret, M., "Impact of Spacecraft Design on Remote Control of Satellite

Operations", IFAC Automatic Control in Space, Noordwijkerhout, The

Netherlands, 1982, pp. 563-7.

Hawkinson, Lowell B., Levin, Michael E., Knickerbocker, Carl G., and

Moore, Robert L., "A Paradigm for Real Time Inference", ist Annual

Artificial Intelligence and Advanced Technology Conference, Long Beach,

California, 1985, pp. 51-56.

Kornell, Jim, "A Satellite with a Good Attitude: An Expert System for

Stationkeeping", Third IEEE Conference on Artificial Intelligence

Applications, Denver, CO, December 1986, pp. iii-I17.

McDaniel, Bonnie G., "Interface Requirements For Real-Time Distributed

Artificial Intelligence", Proceedings, IEEE International Conference on

Data Engineering, Los Angeles, CA, April 1984, pp. 241-245.

Mullikin, Richard L., "The Commercialization of Artificial

Intelligence: Identification, Assessment and Implication of an

Integrated Decision Support System and Expert System", Master Thesis,

Loyola Marymount University, Los Angeles, California, 1986.

Scarl, E.A., and Delaune, C.I., "LOX Expert System", Proceedings, 21st

Space Congress, Cocoa Beach, Florida, April 1984, p. 2-16.

Smith, Leighton L., "The Distributed Intelligence System and Aircraft

Pilotage", Artificial Intelligence and Simulation, Simulation Councils,

Inc., San Diego, CA, 1985, pp. 26-28.

443



TES - A MODULAR SYSTEMS

DEVELOPMENT FOR REAL

N88-16441
APPROACH TO EXPERT SYSTEM

TIME SPACE APPLICATION

Brenda England

Ralph Cacace
Hamilton Standard

MS IA-2-5

Bradley Field Road

Windsor Locks, CT 06096

ABSTRACT

A major goal of the Space Station Era is to reduce
reliance on support from ground based experts. The

development of software programs using Expert Systems

technology is one means of reaching this goal without

requiring crew members to become intimately familiar
with the many complex spacecraft subsystems.

Development of an Expert Systems program requires a
validation of the software with actual flight hardware.

By combining accurate hardware and software modelling

techniques with a modular systems approach to Expert

Systems development, the validation and the software

program can be successfully completed with minimum risk
and effort. The TIMES Expert System (TES) is an

application that monitors and evaluates real time data

to perform fault detection and fault isolation as it
would otherwise be carried out by a knowledgeable

designer. This paper disucsses the development process

and primary features of the TES, the modular systems

approach, and lessons learned.
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Abstract

The Automated Subsystem Control for Life Support System (ASCLSS) program has
successfully developed and demonstrated a generic approach to the automation and control of
Space Station subsystems. The automation approach was recently delivered and demonstrated by
Honeywell and Life Systems Inc. for NASA JSC. The hierarchical and distributed real-time
controls system places the required controls authority at every level of the automation system
architecture. As a demonstration of the automation technique, the ASCLSS system automated the
Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life

Support System (ECLSS) using real-time, high fidelity simulators of the ARG processes. This
automation system represents an early flight prototype and an important test bed for evaluating

Space Station controls technology including future application of ADA software in real-time control
and the development and demonstration of embedded artificial intelligence and expert systems
(AI/ES) in distributed automation and controls systems.

Introduction

Early in 1983, NASA initiated a technology development program entitled, Automated
Subsystem Control for Life Support System (AS CLSS, contract NAS-9-16895). The national
commitment for a permanently manned Space Station was growing and NASA recognized that to
be a successful, operational Space Station would require highly reliable and fully automated
subsystems. NASA OAST (code R) and the Crew and Thermal Systems Division of NASA JSC
set out to address this vital fast step for the Space Station.

Following a competitive procurement, Honeywell and Life Systems, Inc. initiated a four

year technology program to define, develop, and demonstrate a generic or common approach to
automation and control for all Space Station subsystems including ECLSS, thermal (TPS), power
(EPS), and guidance, navigation, and control'(GN&C). Because of the critical importance of life
support, the generic automation technique was to be demonstrated against the air revitalization
group (ARG) of the regenerative ECLSS subsystem using high fidelity real-time simulators of the
ARG 02 generation, CO2 removal, and CO2 reduction processes.

A$CLSS Demonstration System

An early ASCLSS applications study indicated that a hierarchical architecture of distributed
controllers would fulfill the automation and control requirements across a majority of Space Station

subsystems. Additional automation system drivers included mr :imum operational autonomy from
the ground, automation of routine subsystem operations and redundancy management, strong
emphasis on commonality of hardware and software, accommodation for on-orbit maintenance,
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use of accepted standards, and ease of subsystem performance growth and insertion of new

technology.

BASIC BASIC BASIC
CONTROLLER CONTROLLER CONTROLLER

1 2 3

02 GEN (SFE) CO2 REDUC(SCRS)

PC

SI:E
SIMULATOR

• COMMON,CARDLEVEL
HARDWAREELEMENTS

• 17f_ACPU,
(14KROM,
40K RAM

• MIL-STO-15538CMNO/RESP
OUALRED. BUS

• HIGICSPEEDSERIAL
BUSSES(23OKBAUD)

• INOMOUN. PROCESS
SIMULATORS

SCRS
SIMULXTOR

FIGURE I. ASCLSS Automation and Control Demonstration System

The resulting ASCLSS automation system shown in figure 1 consisted of a two level
hierarchy of distributed controllers implemented with MIL-STD-1750A microprocessors tied
together by a high speed MIL-STD-1553B bus network. All four controllers at the basic or local
level and system level are implemented in completely common hardware which supports
maintainability and lower life cycle cost. The ARG processes are implemented by real-time
simulations in individual personal computers. An important man-machine interface (MMI) is
included in the automation system to provide the required supervisory control authority for the

Space Station crew. Through the MMI, which represented the multi-purpose application console
(MPAC), the crew can monitor system status and performance, and when necessary, exert
override control authority or conduct system fault evaluation and maintenance procedures. The

MMI also provided an effective demonstration of the control authority allocated between the crew,
the system level controller and the basic or process level cclntrollers.

The ASCLSS automation system implemented an innovative layered software architecture
written in Pascal which emphasized significant levels of common software modules. Figure 2
illustrates the layered software structure developed for the automation and controls system. The

real-time operating system (OS) is fully common to all controllers and is written in 1750A
assembly. The OS performs all network communications and I/O data transfers and
schedules/deschedules all controller tasks. The ASCLSS system control software acts as the agent

for the application software between the I/O data base and the generic operating system. The
system control s,3ftware is the same in all local controllers and largely common in the system level
controller. The only unique software in each controller is the application software and its
associated table driven I/O data base. Thus, the non application-dependent software in each

controller in the ASCLSS automation architecture is common.
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FIGURE 2. Layered Software ArchitectureEstablishesSoftware Commonality

Many other important benefits are achieved by this layered software approach:

The application software is compldely independent of the automation system target hardware
and operating system. This fosters software reusability and portability to any target
microprocessor based system and accommodates software testing independent of the
automation and controls system development.

The ASCLSS software architecture was designed to have the application software developed
by the subsystem or process expert. Thus, process control responsibility and accountability

are retained by the subsystem or process developer, an important Space Station requirement.

The subsystem controls authority is distributed across the automation hierarchy with maximum
controls authority pushed to the lowest or local level which enhances system and process
operational autdnomy.

The use of real-time simulators.. of the ARG processes re p resent an earl yp" roof- of- concept"
of TAVERNS (Test And Verificauon of Remotely Networked Systems) being planned for Space
Station. The simulators have the capability to run in real-time and at ten times real-time. They also
can program in failures, abnormal performance conditions, and unique operational scenarios with
no risk to the process hardware. They fully test the automation and controls system logic before
the process hardware is integrated.

In summary, the delivered ASCI $S system demonstrated the automation of 1)three

complex life support processes; 2)the monitoring and reporting of ARG system and process status,
warning, and alarms; 3)the system event logging; 4)the fault detection and system safmg; and 5)the
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calculation and evaluation of the current system operational performance parameters and
efficiencies.

pistributed/Embedded AI/ES

Space Station's ultimate success will depend heavily on AIRES. As the Space Station
evolves beyond IOC, application of AI/ES will be essential to support:

• Crew operations and scheduling activities.

• Enhanced real-time control procedures and subsystem performance management.

• Fault prediction, detection, isolation, system reconfiguration, and recovery.

• On-orbit maintenance and repair.

The capture of design knowledge and operations history will be required to reduce on-orbit
and ground personnel training. The AI/ES will monitor Space Station subsystems, conduct
performance trend analyses, and notify the crew of degrading or unsafe conditions well in advance
of catastrophic failure. Maintenance will be scheduled when convenient and productive for the
crew operations and/or compatible with the logistics schedule.

To meet the cost constraints of Space Station IOC, expert systems and limited levels of
artificial intelligence can be embedded in the existing DMS architecture of conventional controllers
using conventional software languages such as ADA. These initial AI/ES functions would .be used
as "controls advisors" and historic data base generators.

AT STATION IOC LATER OPERATIONS PHASE

IY_TRIB_FJ3OED _ ADVISOR TO SYSTEM LEVEL

AHES CONTROL ADVLqOR CONTROLLER IN A PARALLEL PROCESSOR

CONTROL BASIC
CONTROL

EVOLUTIONARY STATION

WITH CONTROL AUTHORITY

• MATURE DATABASE

• CONFIDENCE IN

VALIDATED

BASIC

CONTROL

GRACEFUL GROWTH AND EVOLUTION OF AI/F_ IMPLEMENTATION
WITH MINIMUM IMPACT ON EXISTLNG SUBSYSTEM

RI_01

SDRAW2

FIGURE 3. Evolutionary AI/ES Implementation on Space Station
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The AI/ES advisory functions would be tested and verified by using TAVERNS
simulators. Figure 3 describes an approach to implementing AFES on the Space Station at IOC
and gracefully evolving the level of AI/ES sophistication, control authority, and technology of

implementation. As confidence is developed in the AFES controls advisor which is being validated
"in-situ" in the Space Station operational environment, the AI/ES would be given ever increasing
levels of control and command authority. As the level of functional sophistication grows, the

AI/ES would eventually be hosted in parallel special purpose processors or AI chips.

The existing ASCLSS automation system offers a unique opportu.nity and test bed to
demonstrate these principles of distributed, embedded AI/ES in a convenuonal real-time controls
system architecture using conventional languages such as ADA. The real-time ASCLSS
controllers have 40% of their CPU throughput in each 100ms minor cycle and 80% of their RAM
and ROM memory available for embedded AFES "controls advisor" functions such as comparison

of process state models, monitoring performance trend data, fault prediction, diagnosis, system
reconfiguration, and recovery. The table driven, layered software is uniquely structured to
accommodate the AI/ES functions at each controller in the hierarchy as merely another task in the

application software program. The distributed, embedded AI/ES provides a high level of
autonomy and a very responsive advisory function to the real-time process controllers.

The ASCLSS automation system has extended the proven approaches to industrial and
commercial automation and control into the unique environment and high performance

requirements of the future permanently manned Space Station. The recently delivered ASCLSS
has successfully pioneered many of the important features planned for Space Station including
commonality of hardware and software, implementation of standards, incorporation of high levels
of operational autonomy, and the placement of the crew operator into supervisory control. The
system also represents an early Space Station test bed which will support evaluation of subsystem
controls requirements, application of ADA software to real-time control, and development of
embedded AI/ES in a distributed automation and controls system.

Ten years from now, as astronauts and civilians are living and working on the Space
Station, the Earth bound world will undoubtedly take this significant achievement for granted. The

automation principles demonstrated by the ASCLSS system represent an early benchmark and
significant f'n'st step to this successful operational Space Station in the mid-1990's.
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ABSTRACT

This paper discusses some aspects of the on-board application of Expert

Systems (ES's) in artificial satellites. The ideas presented are mainly based
on the experience gained during a study performed by LABEN, CRI DORNIER and
CRISA under European Space Agency (ESA) contract; the activities of the study,

which include the implementation of two prototypes on a dedicated AI machine,

are described. The more general implications of the experience are then

discussed. These concern firstly, the interrelationship between the ES and

the architecture of the satellite and its impact on the mission definition

phase of the satellite lifecycle. Secondly, the main obstacles that need to
be overcome before operational use of ES's on-board can take place, and Namely

the matters of testing, knowledge collection, and availability of computing

resources. Finally, the activities that appear to be required in the near

future to prepare the way for the full exploitation of this technology for

satellite autonomy are briefly outlined, together with a brief description of

an ongoing work studying the application of AI tecnniques for the management
of the Cassini Titan probe; the probe will not have a telecomand link and will

therefore have to manage autonomously its descent on Titan.

INTRODUCTION

Lately increased satellite autonomy has become a more pressing necessity;

the reasons are various, but all have their roots in the fact that current

technology allows very complicated missions to be implemented, the control of
which, with the methods developed for satellites of previous generations, is

extrememly costly. The recent availability of powerful development
environments for Expert Systems (ES) has simplified the implementation of

these to the point of making them viable tools for the achievement of

increased spacecraft autonomy, and some activities nave been initiated by the

ESA to investigate the possibilities of applications of ES's to its own

purposes.

ESA SMELLITE ARCHITECTURE

Over tne last twenty odd years an architecture and a relatively fixed

break-down into major functional subsystems have become generally accepted.

The subsystems usually include Structure, Thermal, Power, Data Handling,
Attitude and Orbit control, Telemetry/Telecommand, Antennas, and Payload(s).

This break-down in functional subsystems represents the best compromise among

often contrasting requirements, of which a significant one is the need to

comply with geographical distribution i.e. assignment of tasks to companies in

all participating member-states

In this architecture the Data Handling (OBDH) represents the core of the

whole spacecraft from the point of view of control and monitoring; it performs
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all the functions required to decode and distribute telecommands, gather and
format spacecraft data for telemetry, and to provide a general purpose
on-board data processing facility. The design of the OBDHis based on a
distributed architecture of (intelligent) units connected by a serial bus;
specialised units provide interfaces to satellite subsystemsand payloads,
while a Centra] Unit controls bus data traffic and general subsystem
operation. The fact tnat this subsystem has access to all satellite data and
that it includes a numberof computing resources makesit the "natural" host
of an on-board ES for autonomy.

SIIJDY OF EXPERT SYSTEM FOR SPACECRAJ=T MANAGEMENT

One of the studies initiated by ESA had as main purposes to verify the

feasibility of an on-board ES for the management of an autonomous spacecraft,

to identify the general requirements of such an ES, to assess the resulting on

board complexity, and finally to identify areas for future research in the

field. Tne study was carried out by a consortium of four companies: LABEN

(Italy), CRI (Denmark), Dornier (W. Germany) and CRISA (Spain).

The first task was to identify a satellite which could be used as

reference for the study. It was as decided to define a "hypothetical"

satellite, rather than rely on a real design, because it was thought that this

would allow it to be tailored to fit the purposes of the study; this in fact

resembles the "toy problem" approach. The definition of the reference

satellite served its purpose, because it provided a stable, logically well

defined test case of reasonable complexity, but the whole procedure introduced

some difficulties that will be explained later. The architecture of the
reference satellite was based on the functional breakdown usual for ESA

satellites, and the ES was supposed hosted in the OBDH.

Although the eventual goal of the study was to increase satellite autono-

my by the exploitation of ES technology in an a priori unrestricted fashion,

it was also clear it would be necessary to identify a limited application

domain. The second task of the study was therefore a review of the

possibilities within the general areas of mission, health and failure man-

agement; of these, the mission and health management were discarded because

these tasks consist essentially of resource and activity scheduling, and ther-

efore require reasoning about time. The remaining one, fault management, was

Chosen also because diagnosis is one of the historically successful applicati-

ons of ES's. For what regards the object of the fault management activity,

the Power and Data Handling subsystems were selected because the complexity of

their design and operation matched well with the goals of the study, the rele-

vant expertise is well established within the Consortium, and finally because

their continuous operation is vital for tne safety of the spacecraft.

The conventional metnod of knowledge acquisition through face to face
consultations between the domain experts and the ES builder was difficult due

to the geographical distribution of the personnel involved. Consequently,
after an initial study of the problem area, a "knowledge specification

formalism" was produced. This was then submitted to the domain experts, who

wrote down the problem solving knowledge, producing "paper knowledge bases".

These, together with the actual descriptions of the target systems (OBDH and

Power) were the input to the coding of the ES. There was good correspondence

between the knowledge specification formalism and the ES architecture.
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Consequently, the actual coding of the ES's using the "paper knowledge bases"

was fairly easy. However, it turned out that the problem solving strategy used

by the ES deviated in many cases from that of the experts. These deficiencies

had their roots in an insufficient problem analysis at the outset of the

study, or at least in the failure to identify the implicit assumptions about

diagnosis strategy within the specification formalism and to discuss them with

the domain experts. The proolem solving techniques should have been identifi-

ed better before the knowledge specification formalism was constructed. Alth-

ough the prototype systems seldom arrived at erroneous diagnoses, the failure

in capturing correctly the experts' strategic problem-solving knowledge is se-

rious. Obviously the solution adopted was too optimistic, and more

code-evaluate-update cycles are required even before the formalism is fixed;
afterwards it can be used by the experts to supply inputs to the knowledge

base in a reasonably simple yet consistent form.

The architecture of the ES was based on a representation which models the

fault propagation by means of a causal associational network. Such a network

allows certain sets of decision strategies to be implemented retaining an exp-

licit representation of the diagnostic knowledge. This knowledge is structur-
ed in three different layers: observation layer (symptoms and test), causal

layer (failure states) and diagnostic layer (diagnosed states). The observati-

on layer contains all the information that can be obtained by the subsystem

organised in symptoms and tests: the first ones are used to activate the diag-

nostic process, the second ones are used by the inference engine, during the
diagnostic process, to discriminate among failure hypotheses. The causal net-

work and diagnostic layers are represented by a directed acyclic graph of

nodes where each node identifies a state representing deviations from the

normal behaviour. Three types of nodes are used:

- Failure states: nodes which conjecture the occurrence of a failure in a

certain system component
- Diagnosed states: end nodes of the network containing the identification

of the failed system component

- Starting nodes: pointed at by the associational arcs as result of the

identification of a known symptom.
The nodes are connected by means of two types of arcs:

- Associational arcs that link the symptoms with starting nodes identifying

the weight of the association;

- Causal arcs that link couple of states identifying the weight of the

causality.

The development environment used in the study was the Inteliicorp's KEE

running on on a Texas Instruments Explorer workstation. The failure states

(diagnosis hypotheses) were implemented as units (frames), and the

determination of the causal pathways was effected through inferences over

rule-sets. Tests and actions were associated with the units representing

failure states as methods. The debugging facilities provided by the system

enhanced the "visibility" of the diagnosis process considerably, especially

compared to what would have been possible with a "conventional" software
development environment.

Two prototype expert systems were constructed, one for the Power S/S, and

one for the OBDH S/S. The user interfaces are similar in design for the two

systems.The graphical facilities of the development environment are used to

display information about knowledge bases, subsystem, and diagnosis process.
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The user's communication with the prototypes is based on menu selection. He

may specify the symptoms of a failure among those that are considered likely

by the experts; when the setting of the symptoms chosen for the test case is

completed, the diagnosis process is started. No emulation of the subsystems

has been implemented, so the user must supply the ES witn the outcome of the

actions it attempts to carry out, be these tests or activation of redundant
units. When more than one failure can conceivably cause the same symptoms, the

diagnosis process implemented in the ES will choose as first hypothesis the
most critical one on the basis of a criticality value that is associated to

each failure symptom.

IMPLICATIONS OF STUDY RESULTS

From the early stages of the study a difficulty arose in the definition

of the corrective actions that were to be executed by the on-board ES: quite

simply the choice was restricted to some redundancy switching. The difficulty

was initially attributed to the lack of detail in the satellite that had been

chosen as target; as more insight into the matter was acquired, it was

recognized that the problem was more basic than it seemed and that it was

also caused by the idea at the base of many a system design: to make each
component as much a "black box" as possible. This was compounded by the faCt

that, to avoid the difficulties related to the representation of time and the

reasoning about it, sequences of actions were considered only in atomic form.

The bottom line is that simplification of the interfaces among units reduces

integration and control problems, but severely limits the choice of action to

correct a failure, to the point of making questionable the advantages of an ES

compared to conventional algorithmic or table driven software. In the future

the complexity of spacecrafts will increase and so will integration problems;

in addition, the functional partition of the satellite in subsystems is

closely mapped into areas of competence of european industries which are by

now well established and not likely to be easily changed. Therefore, it is to

be expected that the same type of problem will appear in the future.

Another conclusion tnat can be drawn from the previous paragraph is that

it is difficult and not necessarily advantageous to use an ES in a satellite

designed without this technology in mind. This point of view is however very

much in contradiction with a ratner general attitude which is more or less

expressed by "first mission requirements must be defined, and from these

the need for an ES". In this respect it is interesting to note that even

within this study the flow of activities effectively followed this pattern:
first a reference satellite was defined on the basis of an architecture which

was developed with completely different priorities, and then an ES was

designed to take up tne tasks that were meant to be carried out Dy simple on
board HW or SW. One should of course accept that this represents an

"initiation rite" for most new technologies; at the same time, one should be

aware of its existence and of its limiting effects on the appreciation of the

technology. Requirements are inevitably influenced by what is known to be
feasible or available and therefore mission definition studies will take into

account ES technology; _owever, it is also clear that to rely only on this

mechanism will imply an unnecessary delay before a potentially extremely

useful technology can be applied to its full capabilities.
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OPEN ISSUES

A number of problems remain to be solved before ES's can be accepted for
routine on board use. The first is the matter of validation, probably the big-

gest obstacle that needs to be overcome before on board ES applications become

accepted; current on-board SW for unmanned satellites is orders of magnitudes

less complex and "brute force" testing can achieve sufficient coverage. This

is certainly not going to be possible with ES's, and in fact, although the pr-

oblem has been identified and described, a satisfactory solution is not avail-

able; nevertheless, work is being carried out in this area, and one can feel

reasonably confident that an acceptable solution will be found. However, much
of the testing of ES's will continue to rely also on the assessment by human

experts of the "reasoning" that generated a specific output. The reasoning is

accessible only through SW facilities that are not justified in a satellite

out of ground contact; therefore there is a definite risk of having to choose

between two equally undesirable alternatives: installing on board a system

which is overburdened by unnecessary facilities, or performing the tests with-

out adequate support. A possible solution would be the development of a stand-

ard run time environment together with a tool for the automatic porting from

the development system to the run time environment. In this way the testing

and validation problem could be split in two parts, the first being the "conc-

eptual" testing, to take place in the full ES development environment, and the

second being done once and for all by the validation of a tool for the automa-
tic translation of the ES to a "streamlined" run time version. The translation

would consist essentially in the removal of the display, explanation, modific-

ation, etc. facilities and, when applicable, of a compilation.

The second problem is that space qualified HW which is currently availab-

le or in sight does not provide the resources that are needed to run in accep-

table time ES's that nave been developed with powerful shells. The previously
described combination of run time environment and automatic translation tool

could provide a meaningful contribution to the reduction of on-board resource

requirements without performance penalties.

Finally, within the european space industry the problem of knowledge col-

lection is compounded by the fact that experts are widely dispersed among dif-

ferent companies and countries; in tnis respect, procedures and tools to aid

the process of knowledge collection and formalization would be particularly

beneficial. The method used in this study can be seen only as a first step.

CONCLUSIONS

The two prototypes that nave been implemented proved that an ES that per-

forms a meaningful subset of the functions required for satellite autonomy is

feasible in the european space industry with current technology. The line of

activity has been extended to implement an ES to manage the descent of the

Cassini probe on Titan. This mission has been chosen as target because no TC

link will be available and because, given its relatively early stage of defin-

ition, it is hoped that the conceptual problems described earlier could be

overcome. The same consortium will implement a prototype on an AI workstation

and then transfer it to some HW more representative of on board resources; the

purpose of the additional step is to acquire some dimensioning information on

the related difficulty and to be able to run some performance tests.
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